写用于故障诊断的一维收缩卷积自编码器代码keras
时间: 2023-07-29 10:08:08 浏览: 151
好的,以下是使用 Keras 搭建的用于故障诊断的一维收缩卷积自编码器的代码:
```python
from keras.layers import Input, Conv1D, MaxPooling1D, UpSampling1D
from keras.models import Model
# 定义输入层
input_layer = Input(shape=(input_dim, 1))
# 编码器部分
encoded = Conv1D(32, 3, activation='relu', padding='same')(input_layer)
encoded = MaxPooling1D(2, padding='same')(encoded)
encoded = Conv1D(16, 3, activation='relu', padding='same')(encoded)
encoded = MaxPooling1D(2, padding='same')(encoded)
encoded = Conv1D(8, 3, activation='relu', padding='same')(encoded)
encoded = MaxPooling1D(2, padding='same')(encoded)
encoded = Conv1D(4, 3, activation='relu', padding='same')(encoded)
# 解码器部分
decoded = Conv1D(8, 3, activation='relu', padding='same')(encoded)
decoded = UpSampling1D(2)(decoded)
decoded = Conv1D(16, 3, activation='relu', padding='same')(decoded)
decoded = UpSampling1D(2)(decoded)
decoded = Conv1D(32, 3, activation='relu', padding='same')(decoded)
decoded = UpSampling1D(2)(decoded)
decoded = Conv1D(1, 3, activation='sigmoid', padding='same')(decoded)
# 定义模型
autoencoder = Model(input_layer, decoded)
# 编译模型
autoencoder.compile(optimizer='adam', loss='mse')
# 训练模型
autoencoder.fit(x_train, x_train, epochs=epochs, batch_size=batch_size, shuffle=True, validation_data=(x_test, x_test))
# 使用训练好的模型进行故障诊断
decoded_data = autoencoder.predict(x_test)
mse = np.mean(np.power(x_test - decoded_data, 2), axis=1)
threshold = np.mean(mse) + np.std(mse) * k
for i in range(len(mse)):
if mse[i] > threshold:
print("样本 %d 有故障" % i)
```
在这里,我们使用了一维收缩卷积自编码器,即编码器部分的通道数逐层减少。这样可以使得自编码器学习到更加紧凑的表示,有助于更好地捕捉数据中的故障信息。其他部分的代码与一维卷积自编码器的代码类似。
阅读全文