写用于故障诊断的一维胶囊网络代码keras
时间: 2023-07-28 07:10:51 浏览: 131
AdaBN代码基于Keras和Tensorflow以及一维卷积神经网络
5星 · 资源好评率100%
以下是一个使用Keras实现的一维胶囊网络(Capsule Network)用于故障诊断的示例代码:
```python
from keras import layers
from keras import models
from keras import backend as K
from keras.utils import to_categorical
def squash(x, axis=-1):
s_squared_norm = K.sum(K.square(x), axis, keepdims=True)
scale = K.sqrt(s_squared_norm + K.epsilon())
return x / scale
class Capsule(layers.Layer):
def __init__(self, num_capsules, capsule_dim, routings=3, **kwargs):
super(Capsule, self).__init__(**kwargs)
self.num_capsules = num_capsules
self.capsule_dim = capsule_dim
self.routings = routings
def build(self, input_shape):
input_dim = input_shape[-1]
self.W = self.add_weight(shape=(input_dim, self.num_capsules * self.capsule_dim),
initializer='glorot_uniform',
name='W')
self.bias = self.add_weight(shape=(self.num_capsules, self.capsule_dim),
initializer='zeros',
name='bias',
trainable=False)
self.built = True
def call(self, inputs):
inputs_expand = K.expand_dims(inputs, 2)
inputs_tiled = K.tile(inputs_expand, [1, 1, self.num_capsules, 1])
W_expand = K.expand_dims(self.W, 0)
W_tiled = K.tile(W_expand, [K.shape(inputs)[0], 1, 1])
u_hat = K.batch_dot(inputs_tiled, W_tiled)
b = K.zeros_like(u_hat[:, :, :, 0])
for i in range(self.routings):
c = K.softmax(b, axis=1)
o = K.batch_dot(c, u_hat, [2, 2])
o = squash(o)
if i < self.routings - 1:
b = K.batch_dot(o, u_hat, [2, 3])
b = K.sum(b, axis=0)
return o
def compute_output_shape(self, input_shape):
return tuple([None, self.num_capsules, self.capsule_dim])
def build_model(input_shape, num_classes):
x = layers.Input(shape=input_shape)
conv1 = layers.Conv1D(filters=256, kernel_size=9, padding='valid', activation='relu', strides=1)(x)
primary_capsules = Capsule(num_capsules=8, capsule_dim=32, routings=3)(conv1)
digit_capsules = Capsule(num_capsules=num_classes, capsule_dim=16, routings=3)(primary_capsules)
output_capsule = layers.Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(digit_capsules)
model = models.Model(inputs=x, outputs=output_capsule)
return model
```
这个模型包含了一个胶囊层(Capsule)和两个卷积层(Conv1D)。在训练时,可以使用交叉熵作为损失函数,同时使用Adam优化器进行模型的优化:
```python
from keras import optimizers
model = build_model(input_shape=(input_dim,), num_classes=num_classes)
model.compile(optimizer=optimizers.Adam(lr=0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
model.summary()
```
然后可以使用fit方法训练模型:
```python
model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test, y_test))
```
其中x_train和x_test是训练集和测试集的输入数据,y_train和y_test是对应的标签。训练完成后,可以使用evaluate方法评估模型的性能:
```python
loss, acc = model.evaluate(x_test, y_test, batch_size=64)
```
以上就是一个使用Keras实现的一维胶囊网络用于故障诊断的示例代码,希望可以帮助你更好地理解和应用胶囊网络。
阅读全文