基于ros的A*与dwa算法结合cpp主函数
时间: 2023-07-10 10:25:57 浏览: 149
好的,我可以帮你回答这个问题。
首先,需要安装ROS系统和相关的软件包,以及C++编译环境。然后,可以按照以下步骤进行操作:
1. 创建ROS工作空间并初始化
```
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/
catkin_make
source devel/setup.bash
```
2. 创建ROS包
```
cd ~/catkin_ws/src
catkin_create_pkg astar_dwa
```
3. 在`astar_dwa`包下创建`src`文件夹,并在其中创建`astar_dwa.cpp`文件
```
cd ~/catkin_ws/src/astar_dwa
mkdir src
cd src
touch astar_dwa.cpp
```
4. 在`astar_dwa.cpp`文件中添加代码
```cpp
#include <ros/ros.h>
#include <nav_msgs/OccupancyGrid.h>
#include <nav_msgs/Path.h>
#include <geometry_msgs/Twist.h>
#include <tf/transform_listener.h>
#include <tf/message_filter.h>
#include <message_filters/subscriber.h>
#include <visualization_msgs/Marker.h>
#include <visualization_msgs/MarkerArray.h>
// 导入A*和DWA算法的头文件
#include "astar.h"
#include "dwa.h"
class AstarDwa
{
public:
AstarDwa() : tf_(ros::Duration(10))
{
// 订阅地图和目标点
map_sub_ = nh_.subscribe("map", 1, &AstarDwa::mapCallback, this);
goal_sub_ = nh_.subscribe("goal", 1, &AstarDwa::goalCallback, this);
// 发布路径和控制指令
path_pub_ = nh_.advertise<nav_msgs::Path>("path", 1);
cmd_pub_ = nh_.advertise<geometry_msgs::Twist>("cmd_vel", 1);
// 初始化A*和DWA算法
astar_ = new Astar();
dwa_ = new DWA();
// 设置地图分辨率和边界
astar_->setResolution(0.05);
astar_->setBoundary(-15.0, 15.0, -15.0, 15.0);
}
~AstarDwa()
{
delete astar_;
delete dwa_;
}
void mapCallback(const nav_msgs::OccupancyGrid::ConstPtr& map_msg)
{
// 将地图数据传递给A*算法
astar_->setMap(map_msg->data, map_msg->info.width, map_msg->info.height, map_msg->info.resolution);
// 发布地图
map_pub_.publish(*map_msg);
}
void goalCallback(const geometry_msgs::PoseStamped::ConstPtr& goal_msg)
{
// 获取机器人当前位置
tf::StampedTransform transform;
try
{
tf_.waitForTransform("map", "base_link", ros::Time(0), ros::Duration(5.0));
tf_.lookupTransform("map", "base_link", ros::Time(0), transform);
}
catch (tf::TransformException ex)
{
ROS_ERROR("%s", ex.what());
return;
}
// 将机器人当前位置和目标点传递给A*算法
int start_x, start_y, goal_x, goal_y;
start_x = (int)round((transform.getOrigin().x() - astar_->getBoundaryXMin()) / astar_->getResolution());
start_y = (int)round((transform.getOrigin().y() - astar_->getBoundaryYMin()) / astar_->getResolution());
goal_x = (int)round((goal_msg->pose.position.x - astar_->getBoundaryXMin()) / astar_->getResolution());
goal_y = (int)round((goal_msg->pose.position.y - astar_->getBoundaryYMin()) / astar_->getResolution());
astar_->setStart(start_x, start_y);
astar_->setGoal(goal_x, goal_y);
// 获取A*算法计算的路径
std::vector<std::pair<int, int>> path = astar_->getPath();
// 将路径转换为ROS消息
nav_msgs::Path path_msg;
path_msg.header.frame_id = "map";
for (int i = 0; i < path.size(); i++)
{
geometry_msgs::PoseStamped pose;
pose.pose.position.x = path[i].first * astar_->getResolution() + astar_->getBoundaryXMin();
pose.pose.position.y = path[i].second * astar_->getResolution() + astar_->getBoundaryYMin();
pose.pose.orientation.w = 1.0;
path_msg.poses.push_back(pose);
}
// 发布路径
path_pub_.publish(path_msg);
// 获取机器人当前姿态
tf::Quaternion q(transform.getRotation().x(), transform.getRotation().y(), transform.getRotation().z(), transform.getRotation().w());
double roll, pitch, yaw;
tf::Matrix3x3(q).getRPY(roll, pitch, yaw);
// 获取DWA算法计算的控制指令
geometry_msgs::Twist cmd = dwa_->getCommand(transform.getOrigin().x(), transform.getOrigin().y(), yaw, path);
// 发布控制指令
cmd_pub_.publish(cmd);
}
private:
ros::NodeHandle nh_;
ros::Subscriber map_sub_;
ros::Subscriber goal_sub_;
ros::Publisher map_pub_;
ros::Publisher path_pub_;
ros::Publisher cmd_pub_;
tf::TransformListener tf_;
tf::MessageFilter<nav_msgs::OccupancyGrid> *map_filter_;
Astar *astar_;
DWA *dwa_;
};
int main(int argc, char **argv)
{
ros::init(argc, argv, "astar_dwa");
AstarDwa astar_dwa;
ros::spin();
return 0;
}
```
5. 编译并运行程序
```
cd ~/catkin_ws
catkin_make
source devel/setup.bash
rosrun astar_dwa astar_dwa
```
这样,就可以运行一个基于ROS的A*与DWA算法结合的程序了。需要注意的是,需要将地图和目标点发布到对应的话题中。
阅读全文