sklearn如何拟合两自变量一因变量数据的例子,使用随机森林回归,使用pandas读入数据
时间: 2023-06-05 20:04:38 浏览: 111
可以使用以下代码实现:
``` python
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
# 读入数据
data = pd.read_csv('data.csv')
# 将自变量和因变量分开
X = data[['x1', 'x2']]
Y = data['y']
# 创建随机森林回归器,并拟合数据
rf = RandomForestRegressor()
rf.fit(X, Y)
```
其中,data.csv 是包含两个自变量 x1 和 x2,一个因变量 y 的数据文件。X 是一个包含 x1 和 x2 的 DataFrame,Y 是一个包含 y 值的 Series。使用随机森林回归器 rf 进行拟合。
相关问题
import pandas as pd import numpy as np import scipy.stats as stats import seaborn as sns from sklearn.metrics import RocCurveDisplay from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix,accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn import tree from sklearn.decomposition import PCA import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeClassifier请在此基础上续写代码块,要求是(1) 读入数据后,选取自变量"sysBP", "diaBP","age","totChol","BMI", "heartRate", "glucose"记为X,因变量"TenYearCHD"记为y,组成新的数据集。¶
import pandas as pd
import numpy as np
import scipy.stats as stats
import seaborn as sns
from sklearn.metrics import RocCurveDisplay
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix,accuracy_score
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn import tree
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
# 读入数据
data = pd.read_csv("heart.csv")
# 选取自变量
X = data[["sysBP", "diaBP", "age", "totChol", "BMI", "heartRate", "glucose"]]
# 因变量
y = data["TenYearCHD"]
# 组成新的数据集
new_data = pd.concat([X, y], axis=1)
# 打印新的数据集
print(new_data.head())
运用python完成以下代码,读入数据,自变量有连续变量和分类变量,因变量为二分类变量,采用单因素逻辑回归,利用select from model根据p值小于0.1筛选出特征,并根据特征重要性画出条形图
在Python中,你可以使用`scikit-learn`库来实现这个任务。首先,你需要导入所需的模块:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt
```
接下来,假设你已经有了数据集`df`,其中包含连续变量(列名`continuous_vars`),分类变量(列名`categorical_vars`),以及目标变量`target`(二分类变量)。可以按照以下步骤操作:
1. 数据预处理:
```python
# 将分类变量转换为数值编码
df[categorical_vars] = df[categorical_vars].astype('category')
df[categorical_vars] = df[categorical_vars].cat.codes
# 分割数据集(训练集和测试集)
X_train, X_test, y_train, y_test = train_test_split(df[continuous_vars + categorical_vars], df['target'], test_size=0.2, random_state=42)
```
2. 单因素逻辑回归并特征选择:
```python
lr = LogisticRegression()
selector = SelectKBest(score_func=f_regression,
阅读全文