ICCP算法是一种用于重力匹配导航的算法,请给出一段ICCP算法可以执行的matlab代码
时间: 2023-06-11 10:08:04 浏览: 321
导航相关算法matlab源代码.zip
ICCP算法是一种基于迭代最近点算法(ICP)的增强算法,用于解决多传感器数据融合的问题。以下是ICCP算法的Matlab实现示例:
```
function [R,t] = ICCP(X,Y,R0,t0)
% X and Y are the input point clouds
% R0 and t0 are the initial guess of the rotation and translation
% R and t are the final estimated rotation and translation
% ICCP algorithm
for i = 1:10 % maximum number of iterations 10
% Find the corresponding points in Y for each point in X
[idx,dist] = knnsearch(Y,X*R0+t0,'K',1);
% Calculate the weights
w = dist.^(-2);
% Estimate the rotation and translation
[R,t] = weighted_ICP(X,Y,idx,w);
% Update the guess
R0 = R0*R;
t0 = t0+R0'*t;
end
end
function [R,t] = weighted_ICP(X,Y,idx,w)
% X and Y are the input point clouds
% idx contains the corresponding points in Y for each point in X
% w contains the weights
% R and t are the estimated rotation and translation
% Weighted ICP algorithm
for i = 1:10 % maximum number of iterations 10
% Find the corresponding points in Y for each point in X
Yk = Y(idx,:);
% Calculate the centroid of X and Yk
mX = mean(X);
mYk = mean(Yk);
% Calculate the centered coordinates
Xc = X-repmat(mX,size(X,1),1);
Ykc = Yk-repmat(mYk,size(Yk,1),1);
% Calculate the weighted covariance matrix
C = Xc'*diag(w)*Ykc;
% Perform singular value decomposition
[U,~,V] = svd(C);
% Calculate the rotation matrix R
R = V*U';
% Calculate the translation vector t
t = mYk'-R*mX';
% Update the guess
X = X*R+t';
end
end
```
这段代码实现了ICCP算法的主要步骤,包括计算权重、估计旋转和平移等。需要注意的是,这只是ICCP算法的一个示例实现,实际应用中可能需要根据具体的问题做一些修改和调整。
阅读全文