分支限界法求解01背包问题
时间: 2023-08-12 14:58:47 浏览: 111
对于01背包问题,分支限界法是一种常用的求解方法。它通过不断分支和界限剪枝来寻找最优解。
分支限界法的基本思想是将问题划分为一棵搜索树,每个节点表示一种决策情况,根节点表示初始状态,叶子节点表示可行解。在搜索过程中,通过对每个节点的界限进行评估和剪枝,从而减少搜索空间,提高求解效率。
具体步骤如下:
1. 初始化根节点,将背包容量设置为初始容量,将当前价值和重量设置为0。
2. 对于每个节点,计算其上界(界限)。上界是指当前节点所能达到的最大价值,可以通过计算剩余物品中单位重量价值最高的物品的总价值与当前已装入背包的价值之和得到。
3. 按照上界进行排序,选择一个具有最高上界的节点进行扩展。
4. 对于每个节点,进行扩展操作,即将当前节点的状态(装入或不装入)扩展为两个子节点。
5. 接着对子节点进行界限评估,如果子节点的上界小于当前找到的最优解,剪枝该子节点。
6. 重复步骤4和5,直到搜索完整个树,找到最优解。
通过使用分支限界法,可以在指数级别的时间复杂度下找到01背包问题的最优解。但是,需要注意的是,分支限界法的效率受到问题规模和物品价值之间的关系影响,对于某些特定情况下的大规模问题,可能需要使用其他更高效的算法来求解。
相关问题
分支限界法求解01背包问题c++
分支限界法是一种用于解决优化问题的搜索算法,常用于动态规划问题如0/1背包问题。对于01背包问题,给定一组物品,每个物品有自己的重量w[i]和价值v[i],背包容量为W,我们需要决定是否选择某个物品放入背包,使得总价值最大。
在C++中使用分支限界法求解01背包问题的一般步骤如下:
1. 定义状态:使用二维数组dp[i][j]表示前i个物品中有j单位重量的最大价值。初始化边界条件:dp[0][0]=0,表示空背包的价值。
2. 动态规划:从第一个物品开始遍历,对于每个物品i,有两种选择:放(取)或不放。如果放,则更新dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]);如果不放,则dp[i][j] = dp[i-1][j]。这里使用了贪心策略(即当前物品价值大于剩余价值则取)。
3. 枝剪(剪枝):在递归过程中,当发现包含当前物品后的总重量超过背包容量时,由于剩余空间无法再放下其他物品,所以可以直接跳过这部分搜索,避免浪费计算资源。
4. 返回结果:最终的结果就是dp[n][W],其中n是物品的数量。
```cpp
#include <vector>
using namespace std;
int knapsack(int W, vector<int>& wt, vector<int>& val, int n) {
vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= W; ++j) {
if (wt[i - 1] <= j) {
dp[i][j] = max(val[i - 1] + dp[i - 1][j - wt[i - 1]], dp[i - 1][j]);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[n][W];
}
```
分支限界法求解01背包问题完整代码
以下是使用分支限界法求解01背包问题的完整代码,代码中包含详细的注释说明。
```
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
// 物品结构体
struct Item {
int weight; // 物品重量
int value; // 物品价值
double bound; // 物品价值上界
};
// 比较函数,用于优先队列中的排序
struct cmp {
bool operator() (const Item& a, const Item& b) {
return a.bound < b.bound;
}
};
// 分支限界法求解01背包问题
int knapsack(int W, int n, int* w, int* v) {
// 初始化物品数组
Item* items = new Item[n];
for (int i = 0; i < n; i++) {
items[i].weight = w[i];
items[i].value = v[i];
items[i].bound = 0;
}
// 计算每个物品的价值上界
int total_weight = 0;
for (int i = 0; i < n; i++) {
if (total_weight + items[i].weight <= W) {
total_weight += items[i].weight;
items[i].bound = items[i].value;
} else {
items[i].bound = (W - total_weight) * 1.0 / items[i].weight * items[i].value;
break;
}
}
// 初始化优先队列
priority_queue<Item, vector<Item>, cmp> q;
q.push(items[0]);
// 初始化最大价值
int max_value = 0;
// 分支限界法求解
while (!q.empty()) {
// 取出队首元素
Item item = q.top();
q.pop();
// 如果当前节点的价值上界小于等于当前最大价值,则剪枝
if (item.bound <= max_value) {
continue;
}
// 如果当前节点是叶子节点,则更新最大价值
if (item.weight == W) {
max_value = max(max_value, item.value);
continue;
}
// 扩展左子树,不选当前物品
Item left = item;
left.bound = item.bound - items[left.weight].bound;
left.weight++;
q.push(left);
// 扩展右子树,选当前物品
Item right = item;
right.bound = item.bound - items[right.weight].bound + items[right.weight + 1].bound;
right.weight++;
right.value += items[right.weight - 1].value;
q.push(right);
}
// 释放内存
delete[] items;
// 返回最大价值
return max_value;
}
int main() {
int W = 50; // 背包容量
int n = 5; // 物品数量
int w[] = {10, 20, 30, 40, 50}; // 物品重量
int v[] = {60, 100, 120, 150, 200}; // 物品价值
int max_value = knapsack(W, n, w, v);
cout << "最大价值为:" << max_value << endl;
return 0;
}
```
阅读全文