使用分支限界法求解01背包问题思路
时间: 2023-12-04 16:40:12 浏览: 259
01背包问题是一个经典的组合优化问题,它的目标是在给定的一组物品中选择一些物品放入一个容量为W的背包中,使得背包中物品的总价值最大。分支限界法是一种常用的解决组合优化问题的算法,下面是使用分支限界法求解01背包问题的思路:
1.将问题转化为搜索树:将每个物品看作一个节点,每个节点有两个子节点,分别表示选择该物品和不选择该物品两种情况。
2.定义上界函数:对于每个节点,计算选择该节点及其后续节点所能得到的最大价值,作为该节点的上界。
3.定义下界函数:对于每个节点,计算选择该节点及其后续节点所能得到的最小价值,作为该节点的下界。
4.搜索过程:从根节点开始,按照上界从大到小的顺序依次扩展子节点,直到找到一个可行解或者搜索完整棵树。
5.剪枝:在搜索过程中,如果一个节点的下界小于当前最优解,则可以剪枝,不再继续搜索该节点及其子节点。
下面是一个使用分支限界法求解01背包问题的Python代码示例:
```python
class Node:
def __init__(self, level, weight, value, bound, selected):
self.level = level
self.weight = weight
self.value = value
self.bound = bound
self.selected = selected
def knapsack01(items, capacity):
n = len(items)
items = sorted(items, key=lambda x: x[1]/x[0], reverse=True)
queue = [Node(-1, 0, 0, 0, [])]
max_value = 0
while queue:
node = queue.pop(0)
if node.level == n-1:
if node.value > max_value:
max_value = node.value
solution = node.selected
else:
level = node.level + 1
weight = node.weight + items[level][0]
value = node.value + items[level][1]
if weight <= capacity:
bound = value + (capacity-weight) * items[level+1][1] / items[level+1][0]
if bound > max_value:
queue.append(Node(level, weight, value, bound, node.selected+[1]))
bound = node.bound - items[level][1]
if bound > max_value:
queue.append(Node(level, node.weight, node.value, bound, node.selected+[0]))
return max_value, solution
```
阅读全文