lstm pytorch实现
时间: 2023-11-12 07:00:34 浏览: 138
project2_pytorch实现lstm_
5星 · 资源好评率100%
好的,关于使用 PyTorch 实现 LSTM,你可以按照以下步骤进行:
1. 导入 PyTorch 库和其他必要的库:
```python
import torch
import torch.nn as nn
```
2. 定义 LSTM 模型:
```python
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
其中,`input_size` 表示输入数据的特征数,`hidden_size` 表示 LSTM 隐藏层的大小,`num_layers` 表示 LSTM 层数,`output_size` 表示输出数据的大小。
3. 定义损失函数和优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
```
其中,`CrossEntropyLoss()` 是交叉熵损失函数,`Adam()` 是一种常用的优化器。
4. 训练模型:
```python
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
```
其中,`train_loader` 是训练数据的 DataLoader,`sequence_length` 表示序列长度,`total_step` 表示总共的步数。
5. 测试模型:
```python
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
```
其中,`test_loader` 是测试数据的 DataLoader。
阅读全文