matlab中cnn图片裂缝发育规律计算出图代码
时间: 2023-12-11 13:05:36 浏览: 73
卷积神经网络CNN进行图像分类_matlab
5星 · 资源好评率100%
以下是使用MATLAB实现CNN图片裂缝发育规律计算的示例代码:
```matlab
% 加载数据集
imds = imageDatastore('dataset_path', 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 划分训练集和测试集
[trainImgs, testImgs] = splitEachLabel(imds, 0.8, 'randomized');
% 定义卷积神经网络结构
layers = [
imageInputLayer([224 224 3])
convolution2dLayer(3, 64, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 128, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 256, 'Padding', 'same')
batchNormalizationLayer
reluLayer
convolution2dLayer(3, 256, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 512, 'Padding', 'same')
batchNormalizationLayer
reluLayer
convolution2dLayer(3, 512, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 512, 'Padding', 'same')
batchNormalizationLayer
reluLayer
convolution2dLayer(3, 512, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
fullyConnectedLayer(4096)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(4096)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer
];
% 定义训练参数
options = trainingOptions('sgdm', ...
'InitialLearnRate', 0.001, ...
'MaxEpochs', 20, ...
'MiniBatchSize', 32, ...
'Shuffle', 'every-epoch', ...
'ValidationData', testImgs, ...
'ValidationFrequency', 10, ...
'Verbose', false, ...
'Plots', 'training-progress');
% 训练卷积神经网络
net = trainNetwork(trainImgs, layers, options);
% 对测试集进行分类预测
predictedLabels = classify(net, testImgs);
% 计算分类准确率
accuracy = mean(predictedLabels == testImgs.Labels);
disp(['Classification accuracy: ', num2str(accuracy)]);
```
这里使用了一个基本的卷积神经网络结构,并使用了SGD优化器进行训练。你可以根据自己的需求,对网络结构和训练参数进行调整和优化。
阅读全文