无人机强化学习路径规划matlab代码
时间: 2023-07-12 15:45:46 浏览: 125
以下是一个简单的基于Q-learning强化学习算法的无人机路径规划的 MATLAB 代码示例:
```matlab
% 初始化状态空间、动作空间和奖励函数
stateSpace = [1 2 3 4 5]; % 状态空间
actionSpace = [-1 1]; % 动作空间
rewardMatrix = [0 -1 -1 -1 -1;
-1 0 -1 -1 -1;
-1 -1 0 -1 10;
-1 -1 -1 0 -1;
-1 -1 -1 -1 0]; % 奖励函数矩阵
% 定义超参数和回放缓冲
alpha = 0.8; % 学习率
gamma = 0.95; % 折扣因子
epsilon = 0.1; % ε-贪心策略
maxEpochs = 1000; % 最大迭代轮数
bufferSize = 1000; % 回放缓冲区大小
batchSize = 32; % 批量大小
replayBuffer = nan(bufferSize, 4); % 回放缓冲区
% 初始化Q值矩阵
qMatrix = randn(5, 2);
% 遍历训练数据
for epoch = 1:maxEpochs
% 初始化状态
currentState = 1;
% ε-贪心策略选择动作
if rand < epsilon
currentAction = randi(length(actionSpace));
else
[~, currentAction] = max(qMatrix(currentState, :));
end
% 执行动作并获得奖励
reward = rewardMatrix(currentState, currentAction);
% 转移到下一个状态
nextState = currentState + actionSpace(currentAction);
% 更新Q值矩阵
qMatrix(currentState, currentAction) = qMatrix(currentState, currentAction) + alpha * (reward + gamma * max(qMatrix(nextState, :)) - qMatrix(currentState, currentAction));
% 将数据存储到回放缓冲区
replayBuffer(epoch, :) = [currentState, currentAction, reward, nextState];
% 随机从回放缓冲区中抽取数据进行训练
batch = replayBuffer(randi(size(replayBuffer, 1), batchSize, 1), :);
% 更新Q值矩阵
for i = 1:batchSize
currentState = batch(i, 1);
currentAction = batch(i, 2);
reward = batch(i, 3);
nextState = batch(i, 4);
qMatrix(currentState, currentAction) = qMatrix(currentState, currentAction) + alpha * (reward + gamma * max(qMatrix(nextState, :)) - qMatrix(currentState, currentAction));
end
end
% 使用训练好的模型规划路径
startState = 1;
endState = 5;
currentState = startState;
path = currentState;
while currentState ~= endState
[~, currentAction] = max(qMatrix(currentState, :));
nextState = currentState + actionSpace(currentAction);
currentState = nextState;
path(end+1) = currentState;
end
% 输出路径
disp(path);
```
需要注意的是,这只是一个简单的示例代码,实际应用需要根据具体场景进行修改和优化。
阅读全文