malizationLayer reluLayer transposedConv2dLayer(2,256,'Stride',2) convolution2dLayer(3,256,'Padding','same') batchNormalizationLayer reluLayer convolution2dLayer(3,256,'Padding','same') batchNormalizationLayer reluLayer transposedConv2dLayer(2,128,'Stride',2) convolution2dLayer(3,128,'Padding','same') batchNormalizationLayer reluLayer convolution2dLayer(3,128,'Padding','same') batchNormalizationLayer reluLayer transposedConv2dLayer(2,64,'Stride',2) convolution2dLayer(3,64,'Padding','same') batchNormalizationLayer reluLayer convolution2dLayer(3,64,'Padding','same') batchNormalizationLayer reluLayer convolution2dLayer(1,numClasses) softmaxLayer pixelClassificationLayer ]; % 定义训练选项 options = trainingOptions('adam', ... 'MaxEpochs', 50, ... 'MiniBatchSize', 16, ... 'InitialLearnRate', 1e-3, ... 'Shuffle', 'every-epoch', ... 'ValidationData', {data.valvol, data.valseg}, ... 'ValidationFrequency', 10, ... 'Verbose', true, ... 'Plots', 'training-progress'); % 训练UNET网络 unet = trainNetwork(data.trainvol, data.trainseg, layers, options);在哪怎么定义valvol
时间: 2023-08-06 09:11:05 浏览: 301
在训练UNET网络时,可以通过定义一个cell数组来包含训练数据和验证数据。在这个cell数组中,第一个元素是训练数据,第二个元素是验证数据。因此,在这里可以定义valvol,如下所示:
```
% 定义训练数据和验证数据
trainData = {data.trainvol, data.trainseg};
valData = {data.valvol, data.valseg};
% 定义训练选项
options = trainingOptions('adam', ...
'MaxEpochs', 50, ...
'MiniBatchSize', 16, ...
'InitialLearnRate', 1e-3, ...
'Shuffle', 'every-epoch', ...
'ValidationData', valData, ... % 将验证数据作为选项输入
'ValidationFrequency', 10, ...
'Verbose', true, ...
'Plots', 'training-progress');
% 训练UNET网络
unet = trainNetwork(trainData, layers, options);
```
在这里,我们将验证数据作为选项输入,并在训练过程中每10个epoch进行一次验证,以便监控模型的性能。
相关问题
% CNN-LSTM网络 layers = [ sequenceInputLayer(inputSize,MinLength=minLength) convolution2dLayer(filterSize,numFilters,Padding="same") batchNormalizationLayer reluLayer maxPooling2dLayer(2,Stride=2) convolution2dLayer(filterSize,numFilters,Padding="same") batchNormalizationLayer reluLayer maxPooling2dLayer([4 2],Stride=[4 2]) convolution2dLayer(filterSize,2numFilters,Padding="same") batchNormalizationLayer reluLayer maxPooling2dLayer([4 2],Stride=[4 2]) convolution2dLayer(filterSize,2numFilters,Padding="same") batchNormalizationLayer reluLayer maxPooling2dLayer([4 2],Stride=[4 2]) flattenLayer lstmLayer(numHiddenUnits,OutputMode="last") fullyConnectedLayer(numClasses) softmaxLayer classificationLayer];把它改成再改成这种形式的def C_LSTM_model(input_size): model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(input_size, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(LSTM(32)) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) return model的代码
你需要将原始的 MATLAB 代码转换为 Python 代码。下面是您需要的 Python 代码:
```
from keras.models import Sequential
from keras.layers import Conv1D, MaxPooling1D, Dropout, LSTM, Dense
def C_LSTM_model(input_size):
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(input_size, 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5))
model.add(LSTM(32))
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
return model
```
此代码定义了一个使用 Conv1D、MaxPooling1D、Dropout、LSTM、Dense 层的序列模型。它接受输入大小为 input_size 的一维向量,输出一个二分类结果。您可以根据需要修改参数。
% 加载数据 load('data.mat'); X_train = train_data; % 训练数据 Y_train = train_labels; % 训练标签 X_test = test_data; % 测试数据 Y_test = test_labels; % 测试标签 % 构建神经网络 layers = [ imageInputLayer([28 28 1]) convolution2dLayer(3, 32, 'Padding', 'same') batchNormalizationLayer reluLayer maxPooling2dLayer(2, 'Stride', 2) convolution2dLayer(3, 64, 'Padding', 'same') batchNormalizationLayer reluLayer maxPooling2dLayer(2, 'Stride', 2) convolution2dLayer(3, 128, 'Padding', 'same') batchNormalizationLayer reluLayer fullyConnectedLayer(10) softmaxLayer classificationLayer ]; % 设置训练选项 options = trainingOptions('adam', ... 'MaxEpochs', 10, ... 'MiniBatchSize', 128, ... 'ValidationData', {X_test, Y_test}, ... 'Plots', 'training-progress'); % 训练网络 net = trainNetwork(X_train, Y_train, layers, options); % 测试网络 YPred = classify(net, X_test); % 计算准确率 accuracy = sum(YPred == Y_test) / numel(Y_test); fprintf('Accuracy: %.2f%%\n', accuracy * 100); 这段代码不能运行,如何解决?
在这段代码中,您需要确保已经定义 train_data、train_labels、test_data 和 test_labels。如果您没有定义这些变量,那么您需要将您的数据加载进来,例如:
```matlab
load('mnist.mat');
X_train = mnist.train_images;
Y_train = categorical(mnist.train_labels);
X_test = mnist.test_images;
Y_test = categorical(mnist.test_labels);
```
另外,您需要确保您的 MATLAB 版本支持深度学习工具箱。如果您的版本不支持,您需要更新 MATLAB 或者安装深度学习工具箱。
阅读全文