inputSize = [3 12 2000]; % 输入数据的大小layers = [ ... imageInputLayer(inputSize) batchNormalizationLayer; % transposeLayer; dropoutLayer(0); convolution2dLayer([2 8],2000) batchNormalizationLayer; maxPooling2dLayer([2 4]); dropoutLayer(0); convolution2dLayer([1 2],2000) batchNormalizationLayer; maxPooling2dLayer([1 1]); dropoutLayer(0); fullyConnectedLayer(2) softmaxLayer classificationLayer]; analyzeNetwork(layers);% 定义网络选项 options = trainingOptions('adam', ... 'MaxEpochs', 100, ... 'MiniBatchSize', 1, ... 'ValidationData', [], ... 'Plots', 'training-progress', ... 'Verbose', false); % 创建网络 net = trainNetwork(zeros(inputSize), categorical(zeros(2, 1)), layers, options); end帮我修改代码,以便解决下列报错错误使用 trainNetwork Invalid training data. The output size (2) of the last layer does not match the number of classes of the responses (1). 出错 EEGNet (第 63 行) net = trainNetwork(zeros(inputSize), categorical(zeros(2, 1)), layers, options);
时间: 2024-01-30 15:03:12 浏览: 135
这个错误提示是因为最后一层全连接层的输出大小为2,但是分类标签的数量为1,需要将分类标签的数量修改为2,即:
```matlab
net = trainNetwork(zeros(inputSize), categorical(zeros(2, 2)), layers, options);
```
此外,还有几个需要修改的地方:
1. batchNormalizationLayer 和 dropoutLayer 之间需要添加 reluLayer 或者 leakyReluLayer,否则会导致无法训练。
2. convolution2dLayer 的输出通道数应该减少,否则会导致内存不足或者无法训练。
修改后的代码如下:
```matlab
inputSize = [3 12 2000]; % 输入数据的大小
layers = [
imageInputLayer(inputSize)
batchNormalizationLayer
reluLayer
dropoutLayer(0)
convolution2dLayer([2 8], 100, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer([2 4], 'Stride', [2 4])
dropoutLayer(0)
convolution2dLayer([1 2], 50, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer([1 1], 'Stride', [1 1])
dropoutLayer(0)
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
analyzeNetwork(layers);
% 定义网络选项
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'MiniBatchSize', 1, ...
'ValidationData', [], ...
'Plots', 'training-progress', ...
'Verbose', false);
% 创建网络
net = trainNetwork(zeros(inputSize), categorical(zeros(2, 2)), layers, options);
```
阅读全文