class my_BiGRU(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, gru_dropout): super(my_BiGRU, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.gru_dropout = gru_dropout self.gru = torch.nn.GRU(input_size, hidden_size, num_layers=num_layers, batch_first=True, bidirectional=True) self.fc = torch.nn.Linear(hidden_size * 2, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(x.device) out, _ = self.gru(x, h0) out = self.fc(out[:, -1, :]) return out
时间: 2024-03-14 15:48:46 浏览: 158
这是一个使用双向GRU和全连接层的神经网络模型。该模型的输入大小为input_size,输出大小为output_size。它有num_layers层双向GRU,每层的隐藏状态大小为hidden_size。在GRU层之后,它使用全连接层将GRU的输出转换为所需的输出大小。该模型还使用了dropout来减少过拟合。在forward函数中,它首先将输入x传递给双向GRU,然后将最后一个时间步的输出传递给全连接层以获取最终输出。
相关问题
这段代码哪里错了 class my_BiGRU(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, gru_dropout): super(my_BiGRU, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.gru_dropout = gru_dropout self.gru = torch.nn.GRU(input_size, hidden_size, num_layers=num_layers, batch_first=True, bidirectional=True) self.fc = torch.nn.Linear(hidden_size * 2, output_size) def _setup_BiGRU_layers(self): self.BiGRU_layers = my_BiGRU(input_size=self.args.capsule_out_dim, output_size=self.args.apsule_out_features, hidden_size=self.args.BiGRU_hiddensize, num_layers=self.args.BiGRU_layers, gru_dropout=self.args.BiGRU_dropout, )
这段代码存在两个问题:
1.函数 `_setup_BiGRU_layers` 中的代码应该是在类的构造函数 `__init__` 中进行初始化,而不是在另外一个函数中进行初始化。
2.在调用 `my_BiGRU` 类时,参数名称有误,应该将 `apsule_out_features` 改为 `capsule_out_features`。
改正后的代码如下所示:
```
class my_BiGRU(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, gru_dropout, capsule_out_features):
super(my_BiGRU, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.gru_dropout = gru_dropout
self.gru = torch.nn.GRU(input_size, hidden_size, num_layers=num_layers, batch_first=True, bidirectional=True)
self.fc = torch.nn.Linear(hidden_size * 2, output_size)
self.BiGRU_layers = my_BiGRU(input_size=self.input_size,
output_size=capsule_out_features,
hidden_size=self.hidden_size,
num_layers=self.num_layers,
gru_dropout=self.gru_dropout,
)
```
注意:这里假设 `capsule_out_dim` 和 `args` 都已经在代码中被定义好了。
class my_LSTM(torch.nn.Module): def __init__(self, lstm_inputsize, lstm_hiddensize, lstm_layers, lstm_dropout): super(my_LSTM, self).__init__() self.lstm_inputsize = lstm_inputsize self.lstm_hiddensize = lstm_hiddensize self.lstm_layers = lstm_layers self.lstm_dropout = lstm_dropout self.setup_layers() def setup_layers(self): self.lstm = torch.nn.LSTM( input_size = self.lstm_inputsize, hidden_size = self.lstm_hiddensize, num_layers = self.lstm_layers, batch_first=True, dropout=(0 if self.lstm_layers == 1 else self.lstm_dropout), bidirectional=False ) def forward(self, input): out, (h_n, c_n) = self.lstm(input) return out[:, -1, :]
这是一个使用LSTM的神经网络模型。该模型的输入大小为lstm_inputsize,隐藏状态大小为lstm_hiddensize,LSTM的层数为lstm_layers。该模型还使用了dropout来减少过拟合。在setup_layers函数中,该模型设置了一个LSTM层。在forward函数中,它将输入input传递给LSTM层,然后将最后一个时间步的输出返回作为最终输出。这个模型没有使用双向LSTM,因此它是一个单向LSTM模型。
阅读全文