class GRUModel(nn.Module): def __init__(self, input_size, hidden_size, output_size, num_layers, dropout=0.5): super(GRUModel, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True, dropout=dropout) self.attention = Attention(hidden_size) self.fc = nn.Linear(hidden_size, output_size) # self.fc1=nn.Linear(hidden_size,256) # self.fc2=nn.Linear(256,1)#这两句是加的 self.dropout = nn.Dropout(dropout) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size) out, hidden = self.gru(x, h0) out, attention_weights = self.attention(hidden[-1], out) out = self.dropout(out) out = self.fc(out) return out
时间: 2024-04-14 12:31:16 浏览: 178
RNN.zip_RNN_python_深度学习
这段代码定义了一个 GRUModel 类,用于实现一个基于 GRU(门控循环单元)的模型。该模型接受一个序列作为输入,并输出一个标签。
在初始化函数中,定义了模型的一些参数,包括输入大小(input_size),隐藏层大小(hidden_size),输出大小(output_size),层数(num_layers)以及 dropout 比例(dropout)。
在 forward 函数中,首先初始化隐藏状态 h0,然后将输入 x 和隐藏状态传入 GRU 层进行计算,得到输出 out 和最终的隐藏状态 hidden。接下来,将最终的隐藏状态和输出传入 Attention 层进行注意力计算,得到输出 out 和注意力权重 attention_weights。最后,应用 dropout 操作并将结果传入全连接层 fc,得到最终的输出。
注释部分的代码是添加了两个额外的全连接层 fc1 和 fc2。
阅读全文