如何使用torchviz可视化下面的神经网络 class Net(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Net, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.lstm = nn.LSTM(hidden_size, hidden_size, bidirectional=True) self.self_attn = nn.MultiheadAttention(hidden_size, num_heads=8) self.fc3 = nn.Linear(hidden_size, output_size) def forward(self, x, lengths): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) packed_x = pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False) packed_out, _ = self.lstm(packed_x) out, _ = pad_packed_sequence(packed_out, batch_first=True) out = out.transpose(0, 1) out, _ = self.self_attn(out, out, out) out = out.transpose(0, 1) out = out.mean(dim=1) out = self.fc3(out) return out
时间: 2023-05-27 11:03:40 浏览: 586
Python-flashtorchPyTorch中神经网络的可视化工具包
首先,确保您已经安装了torchviz。
然后,按照以下步骤使用torchviz可视化神经网络:
1. 导入必要的库:
```
import torch
from torch.autograd import Variable
from torchviz import make_dot
```
2. 创建一个Net对象并将其输入引入可视化函数中:
```
Net_object = Net(10, 20, 2)
inputs = Variable(torch.randn(1, 10))
lengths = [10]
dot = make_dot(Net_object(inputs, lengths), params=dict(Net_object.named_parameters()))
```
3. 渲染可视化:
```
dot.render('net.gv', view=True)
```
这将创建一个名为'net.gv'的文件,并将其渲染为图形用户界面。
阅读全文