使用R语言,读取MNIST数据集,并利用支持向量机实现MNIST识别分类
时间: 2024-06-08 14:08:52 浏览: 94
好的,以下是使用R语言读取MNIST数据集并利用支持向量机实现MNIST识别分类的代码:
首先需要安装以下几个包:`reticulate`, `e1071`, `raster`, `magrittr`。
```R
# 加载所需包
library(reticulate)
library(e1071)
library(raster)
library(magrittr)
# 设置Python环境
use_python("/usr/bin/python3")
# 读取MNIST数据集
train_images <- readBin("train-images-idx3-ubyte", "raw", n = 60000 * 28 * 28, endian = "big")
train_labels <- readBin("train-labels-idx1-ubyte", "raw", n = 60000, endian = "big")
test_images <- readBin("t10k-images-idx3-ubyte", "raw", n = 10000 * 28 * 28, endian = "big")
test_labels <- readBin("t10k-labels-idx1-ubyte", "raw", n = 10000, endian = "big")
# 将数据集转换为矩阵形式
train_images <- matrix(train_images, nrow = 60000, ncol = 28 * 28, byrow = TRUE)
test_images <- matrix(test_images, nrow = 10000, ncol = 28 * 28, byrow = TRUE)
# 将标签转换为数字形式
train_labels <- as.integer(train_labels)
test_labels <- as.integer(test_labels)
# 数据归一化
train_images <- train_images / 255
test_images <- test_images / 255
# 创建SVM模型并训练
svm_model <- svm(train_images, train_labels, type = "C-classification", kernel = "linear")
# 预测测试集
predicted_labels <- predict(svm_model, test_images)
# 计算准确率
accuracy <- mean(predicted_labels == test_labels)
cat("Accuracy:", accuracy, "\n")
```
注意:在运行代码之前,需要先下载MNIST数据集,并将其放置在当前工作目录下。可以从以下链接下载:
训练集:
- train-images-idx3-ubyte.gz: http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
- train-labels-idx1-ubyte.gz: http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
测试集:
- t10k-images-idx3-ubyte.gz: http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
- t10k-labels-idx1-ubyte.gz: http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
下载完成后,需要解压缩文件并重命名为对应的文件名。
阅读全文