plt.plot(a, train_score, label='train_score')
时间: 2024-03-07 12:49:34 浏览: 71
这行代码用于在Matplotlib中绘制一条折线图。具体来说,它使用`plt.plot()`函数绘制一条折线,其中`a`是折线的横坐标数据,`train_score`是折线的纵坐标数据,`label`参数指定折线的标签为`train_score`。
在Matplotlib中,我们可以使用`plt.plot()`函数绘制折线图。该函数的第一个参数是折线的横坐标数据,第二个参数是折线的纵坐标数据,可选的第三个参数`label`用于指定折线的标签。
例如,我们可以使用以下代码绘制一条简单的折线图:
```
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [0.1, 0.3, 0.2, 0.4, 0.5]
plt.plot(x, y, label='Line 1')
plt.legend()
plt.show()
```
这会在Matplotlib中绘制一条折线,横坐标为1到5,纵坐标为0.1到0.5,标签为`Line 1`。最后两行代码用于添加图例和显示图形。
相关问题
plt.rcParams['font.sans-serif'] = ['SimHei'] plt.figure() plt.title('参数C的学习曲线') plt.plot(a, train_score, label='train_score') plt.plot(a, score, label='text_score') plt.legend() plt.show()
这段代码使用Matplotlib库绘制了SVM算法中参数C的学习曲线。具体来说,代码首先通过plt.rcParams['font.sans-serif'] = ['SimHei']指定了绘图所使用的字体为SimHei,以支持中文显示。然后,代码创建了一个新的图形窗口,并使用plt.title函数设置该图形的标题为“参数C的学习曲线”。接着,代码使用plt.plot函数分别绘制了训练集和测试集上分类准确率随参数C变化的曲线,其中a表示参数C的取值范围,train_score表示训练集上的分类准确率,score表示测试集上的分类准确率。最后,代码使用plt.legend函数添加图例,并使用plt.show函数显示图形窗口。通过观察学习曲线,可以确定SVM算法中参数C的最优取值范围,以达到最佳的分类效果。
depth = np.arange(1, 15) err_train_list = [] err_test_list = [] clf = DecisionTreeClassifier(criterion='entropy') for d in depth: clf.set_params(max_depth=d) clf.fit(x_train, y_train) y_train_pred = clf.predict(x_train) err_train = 1-accuracy_score(y_train, y_train_pred) err_train_list.append(err_train) y_test_pred = clf.predict(x_test) err_test = 1-accuracy_score(y_test, y_test_pred) err_test_list.append(err_test) print(d, '测试集错误率:%.2f%%' % (100 * err_test)) plt.figure(facecolor='w') plt.plot(depth, err_test_list, 'ro-', markeredgecolor='k', lw=2, label='测试集错误率') plt.plot(depth, err_train_list, 'go-', markeredgecolor='k', lw=2, label='训练集错误率') plt.xlabel('决策树深度', fontsize=13) plt.ylabel('错误率', fontsize=13) plt.legend(loc='lower left', fontsize=13) plt.title('决策树深度与过拟合', fontsize=15) plt.grid(b=True, ls=':', color='#606060') depth = np.arange(1, 15) err_train_list = [] err_test_list = [] clf = DecisionTreeClassifier(criterion='entropy') for d in depth: clf.set_params(max_depth=d) clf.fit(x_train, y_train) y_train_pred = clf.predict(x_train) err_train = 1-accuracy_score(y_train, y_train_pred) err_train_list.append(err_train) y_test_pred = clf.predict(x_test) err_test = 1-accuracy_score(y_test, y_test_pred) err_test_list.append(err_test) print(d, '测试集错误率:%.2f%%' % (100 * err_test)) plt.figure(facecolor='w') plt.plot(depth, err_test_list, 'ro-', markeredgecolor='k', lw=2, label='测试集错误率') plt.plot(depth, err_train_list, 'go-', markeredgecolor='k', lw=2, label='训练集错误率') plt.xlabel('决策树深度', fontsize=13) plt.ylabel('错误率', fontsize=13) plt.legend(loc='lower left', fontsize=13) plt.title('决策树深度与过拟合', fontsize=15) plt.grid(b=True, ls=':', color='#606060') plt.show()
这段代码是用于通过决策树深度来观察决策树的过拟合情况。代码首先定义了一个范围为1到15的深度列表depth,然后创建了两个空列表err_train_list和err_test_list,用于存储训练集和测试集的错误率。接下来,使用决策树分类器DecisionTreeClassifier,并设置criterion为'entropy',创建了一个决策树模型clf。然后,使用for循环遍历深度列表depth,每次将当前深度d设置为clf的最大深度,并使用x_train和y_train进行拟合。然后,分别对训练集和测试集进行预测,并计算错误率,将错误率添加到对应的列表中。最后,使用matplotlib库绘制了深度与错误率的图形,并显示出来。
这段代码可以帮助我们观察决策树在不同深度下的过拟合情况,通过观察错误率的变化,可以选择一个合适的深度来构建决策树模型。
阅读全文