var m, n, g; procedure gcd(m,n); begin if n = 0 then g := m; else g := gcd(n, m mod n) end begin m := 24; n := 16; g := gcd(m, n) end在pl0编译器中的栈

时间: 2023-03-30 22:01:38 浏览: 70
这个问题属于技术问题,我可以回答。在 PL 编译器中,当执行过程调用时,会将当前程序的状态保存在栈中,包括程序计数器、当前函数的局部变量和参数等信息。在这个例子中,当执行 gcd 函数时,m 和 n 会被保存在栈中,当递归调用 gcd 函数时,新的局部变量也会被保存在栈中。当函数返回时,栈中的信息会被弹出,恢复到调用函数之前的状态。
相关问题

const limit=10; var n, f, test, t1, t2; begin n := 0; f := 1; while n # limit do begin n := n + 1; f := f * n; end; test := 1+2-3*4/(5-6)+-7; t1:=test*2; t2:=t1+test; call print; // print all var end.

这是一段基本的PL/0程序,实现了计算10的阶乘和一个数学表达式的值,并将所有变量输出。 下面是程序的修改版,只保留计算10的阶乘的部分,同时加入了错误处理的代码。 ``` const limit=10; var n, f: integer; procedure error(msg: string); begin write("Error: "); writeln(msg); halt; end; begin n := 0; f := 1; while n <> limit do begin if n > limit then error("n exceeds limit"); n := n + 1; f := f * n; end; write("10! = "); write(f); end. ``` 程序中定义了一个`error`的子程序,用于在出现错误时输出错误信息并停止程序运行。在主程序中,加入了对`n`是否超出限制的判断,如果超出限制,则调用`error`子程序输出错误信息并停止程序运行。 程序的功能是计算10的阶乘,输出结果为`10! = 3628800`。

解释const limit=55; var n, fn1, fn2,fn; begin n := 1; fn1 := 1; fn2 := 0; fn := 1; while n # limit do begin n := n + 1; fn := fn1 + fn2; fn2 := fn1; fn1 := fn; end;

这段代码使用了Pascal语言,它的作用是计算斐波那契数列的第55个数。斐波那契数列是一个数列,其中每一个数字都是前两个数字之和。在这段代码中,limit被定义为55,n被初始化为1,fn1和fn2被初始化为1和0,分别代表斐波那契数列的第一个数字和第二个数字。然后,代码通过while循环计算斐波那契数列的第55个数字。在循环中,n每次加1,fn1和fn2分别更新为fn和fn1,而fn的值是前两个数字的和。当n等于55时,循环结束,最终的结果就是斐波那契数列的第55个数字。

相关推荐

把这份代码转换成c++代码var n,i,j,p,x,min,tot,t,len:longint; 2 out_,in_,a,heap:array[0..30005] of longint; 3 son,nxt:array[0..1000005] of longint; 4 lnk:array[0..30005] of longint; 5 procedure print_no; 6 begin 7 writeln('no solution'); 8 close(input); close(output); 9 halt; 10 end; 11 procedure put(id:longint); 12 var i:longint; 13 begin 14 inc(len); heap[len]:=id; i:=len; 15 while (i>1) do 16 begin 17 if (heap[i>>1]>heap[i]) then 18 begin 19 heap[0]:=heap[i]; heap[i]:=heap[i>>1]; heap[i>>1]:=heap[0]; 20 i:=i>>1; 21 end 22 else break; 23 end; 24 end; 25 function get:longint; 26 var fa,son:longint; 27 begin 28 get:=heap[1]; heap[1]:=heap[len]; dec(len); fa:=1; 29 while (fa<<1<=len) do 30 begin 31 if (fa<<1+1>len) or (heap[fa<<1]<heap[fa<<1+1]) then son:=fa*2 32 else son:=fa*2+1; 33 if heap[fa]>heap[son] then 34 begin 35 heap[0]:=heap[fa]; heap[fa]:=heap[son]; heap[son]:=heap[0]; 36 fa:=son; 37 end 38 else break; 39 end; 40 end; 41 procedure add(x,y:longint); 42 begin 43 inc(tot); son[tot]:=y; nxt[tot]:=lnk[x]; lnk[x]:=tot; 44 end; 45 begin 46 readln(n); 47 for i:=1 to n do 48 begin 49 read(out_[i]); 50 for j:=1 to out_[i] do 51 begin 52 read(x); inc(in_[x]); add(i,x); 53 end; 54 end; 55 min:=maxlongint; 56 for i:=1 to n do 57 if (in_[i]=0) then begin min:=0; put(i); end; 58 if min<>0 then print_no; 59 repeat 60 p:=get; inc(t); a[t]:=p; j:=lnk[p]; 61 in_[p]:=-1; 62 while j<>0 do 63 begin 64 dec(in_[son[j]]); 65 if in_[son[j]]=0 then put(son[j]); 66 j:=nxt[j]; 67 end; 68 until len=0; 69 writeln(t); 70 for i:=1 to t do write(a[i],' '); 71 end.

最新推荐

recommend-type

Centos7上安装oracle 11g R2(测试成功)

硬盘分区需要将 /boot 分区设置为 150M,swap 分区设置为 4096M以上,/ 分区设置为 10G以上,/home 分区设置为 5G以上,/tmp 分区设置为 5G以上,/usr 分区设置为 10G以上,/usr/local 分区设置为 10G以上,/var ...
recommend-type

微信小程序中为什么使用var that=this

 在小程序或者js开发中,经常需要使用var that = this;开始我以为是无用功,(原谅我的无知),后来从面向对象的角度一想就明白了,下面简单解释一下我自己的理解,欢迎指正批评。 代码示例: Page({ data: { ...
recommend-type

Kotlin中双冒号::使用方法

= 0 fun test() { var list = listOf(1, 2, 3, 4, 5) println(list.filter(this::isOdd)) } } ``` 在上面的代码中,我们使用双冒号 :: 将 isOdd 方法作为参数传递给 filter 方法。 需要注意的是,在类中的某个...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S