使用 fopen_s读取一个wav文件并对其求WVD并输出WVD结果不使用库函数C语言并解释代码

时间: 2024-04-30 15:20:57 浏览: 61
下面是一个使用 C 语言读取 WAV 文件并计算其 WVD 的示例代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #define PI 3.14159265358979323846 typedef struct { char chunkId[4]; unsigned int chunkSize; char format[4]; char subchunk1Id[4]; unsigned int subchunk1Size; unsigned short audioFormat; unsigned short numChannels; unsigned int sampleRate; unsigned int byteRate; unsigned short blockAlign; unsigned short bitsPerSample; char subchunk2Id[4]; unsigned int subchunk2Size; } WavHeader; int main() { FILE *fp; WavHeader header; char filename[256]; double **data; int i, j, k; double *window; int windowSize = 1024; int hopSize = 256; int numWindows; double **wvd; // Read WAV file header printf("Enter WAV file name: "); scanf("%s", filename); if (fopen_s(&fp, filename, "rb") != 0) { printf("Cannot open file.\n"); return 1; } fread(&header, sizeof(WavHeader), 1, fp); printf("Sample rate: %u Hz\n", header.sampleRate); printf("Number of channels: %hu\n", header.numChannels); printf("Bits per sample: %hu\n", header.bitsPerSample); // Allocate memory for audio data data = (double **) malloc(header.numChannels * sizeof(double *)); for (i = 0; i < header.numChannels; i++) { data[i] = (double *) malloc(header.subchunk2Size / header.blockAlign * sizeof(double)); } // Read audio data for (i = 0; i < header.subchunk2Size / header.blockAlign; i++) { for (j = 0; j < header.numChannels; j++) { switch (header.bitsPerSample) { case 8: data[j][i] = (double) ((int16_t) fgetc(fp) - 128) / 128.0; break; case 16: data[j][i] = (double) ((int16_t) fgetc(fp)) / 32768.0; data[j][i] += (double) ((int16_t) fgetc(fp)) / 32768.0 / 256.0; break; case 24: data[j][i] = (double) ((int16_t) fgetc(fp)) / 8388608.0; data[j][i] += (double) ((int16_t) fgetc(fp)) / 32768.0 / 256.0; data[j][i] += (double) ((int16_t) fgetc(fp)) / 32768.0 / 65536.0; break; case 32: data[j][i] = (double) ((int16_t) fgetc(fp)) / 2147483648.0; data[j][i] += (double) ((int16_t) fgetc(fp)) / 32768.0 / 65536.0; data[j][i] += (double) ((int16_t) fgetc(fp)) / 32768.0 / 4294967296.0; data[j][i] += (double) ((int16_t) fgetc(fp)) / 32768.0 / 1099511627776.0; break; } } } // Calculate WVD numWindows = (header.subchunk2Size / header.blockAlign - windowSize) / hopSize + 1; window = (double *) malloc(windowSize * sizeof(double)); wvd = (double **) malloc(numWindows * sizeof(double *)); for (i = 0; i < numWindows; i++) { wvd[i] = (double *) malloc(windowSize * windowSize * sizeof(double)); } for (i = 0; i < windowSize; i++) { window[i] = 0.5 - 0.5 * cos(2.0 * PI * i / (windowSize - 1)); } for (i = 0; i < numWindows; i++) { for (j = 0; j < windowSize; j++) { for (k = 0; k < windowSize; k++) { double sum = 0.0; int n; for (n = 0; n < windowSize; n++) { int m = i * hopSize + n; if (m >= 0 && m < header.subchunk2Size / header.blockAlign) { sum += data[0][m] * data[0][m - k] * window[n]; } } wvd[i][j * windowSize + k] = sum; } } } // Output WVD FILE *fpOut; char filenameOut[256]; sprintf(filenameOut, "%s.wvd", filename); if (fopen_s(&fpOut, filenameOut, "wb") != 0) { printf("Cannot open file for writing.\n"); return 1; } fwrite(&header, sizeof(WavHeader), 1, fpOut); for (i = 0; i < numWindows; i++) { fwrite(wvd[i], sizeof(double), windowSize * windowSize, fpOut); } fclose(fpOut); // Free memory free(window); for (i = 0; i < numWindows; i++) { free(wvd[i]); } free(wvd); for (i = 0; i < header.numChannels; i++) { free(data[i]); } free(data); fclose(fp); return 0; } ``` 这段代码中,我们首先定义了一个结构体 `WavHeader` 来存储 WAV 文件头信息。然后使用 `fopen_s` 函数打开 WAV 文件,读取文件头信息并打印出来。接着分配内存用来存储音频数据,读取 WAV 文件中的音频数据并存储到内存中。接下来计算 WVD,这里使用了固定大小的窗口和重叠方式来分割音频信号,并在每个窗口上计算 WVD。最后将 WVD 结果写入到一个新的 WAV 文件中。 值得注意的是,这段代码只支持 16、24、32 位的 WAV 文件,如果需要支持其他格式的 WAV 文件需要相应地修改代码。
阅读全文

相关推荐

最新推荐

recommend-type

用Python编程实现控制台爱心形状绘制技术教程

内容概要:本文档主要讲解了使用不同编程语言在控制台绘制爱心图形的方法,特别提供了Python语言的具体实现代码。其中包括了一个具体的函数 draw_heart() 实现,使用特定规则在控制台上输出由星号组成的心形图案,代码展示了基本的条件判断以及字符打印操作。 适合人群:对编程有兴趣的学生或者初学者,特别是想要学习控制台图形输出技巧的人。 使用场景及目标:适合作为编程入门级练习,帮助学生加深对于控制流、字符串处理及图形化输出的理解。也可以作为一个简单有趣的项目用来表达情感。 阅读建议:建议读者尝试动手运行并修改代码,改变输出图形的颜色、大小等特性,从而提高对Python基础语法的掌握程度。
recommend-type

优选驾考小程序 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程.zip

优选驾考小程序 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程 项目启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS
recommend-type

【国信期货-2024研报】宏观2025年投资策略报告:经济结构性矛盾现拐点 2025年注重破局.pdf

研究报告
recommend-type

renren-security-v5.2.0.zip

前端/后端/AI/运维/全栈工程师 常用工具 2024年最新版
recommend-type

毕业设计&课设_校园卡管理系统.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。