请用pytorch构建复值神经网络
时间: 2023-06-23 13:52:52 浏览: 94
python实现的温度预测,天气温度的回归预测 Pytorch 全连接神经网络 优化器Adam
好的,以下是用PyTorch构建复值神经网络的示例代码:
```
import torch
import torch.nn as nn
class ComplexLinear(nn.Module):
def __init__(self, in_features, out_features, bias=True):
super().__init__()
self.weight_r = nn.Parameter(torch.Tensor(out_features, in_features))
self.weight_i = nn.Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias_r = nn.Parameter(torch.Tensor(out_features))
self.bias_i = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias_r', None)
self.register_parameter('bias_i', None)
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight_r, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.weight_i, a=math.sqrt(5))
if self.bias_r is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_r)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias_r, -bound, bound)
nn.init.uniform_(self.bias_i, -bound, bound)
def forward(self, input):
output_r = nn.functional.linear(input.real, self.weight_r, self.bias_r)
output_i = nn.functional.linear(input.imag, self.weight_i, self.bias_i)
return torch.complex(output_r, output_i)
class ComplexMLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super().__init__()
self.fc1 = ComplexLinear(input_size, hidden_size)
self.fc2 = ComplexLinear(hidden_size, output_size)
def forward(self, input):
x = self.fc1(input)
x = torch.tanh(x)
x = self.fc2(x)
return x
```
这是一个简单的复值多层感知机(MLP)模型,包含两个复值全连接层(ComplexLinear),激活函数使用的是双曲正切函数。你可以根据自己的需求修改模型的参数和结构。
阅读全文