python数据分析与挖掘实战第四章数据预处理课后答案
时间: 2023-10-04 09:13:40 浏览: 242
1. 数据预处理的目的是什么?
数据预处理的目的是为了减少或消除数据中的噪声、缺失值、异常值等问题,使得数据更加干净、准确、可靠,为后续的数据分析和建模提供良好的数据基础。
2. 数据清洗的主要步骤有哪些?
数据清洗的主要步骤包括数据去重、缺失值处理、异常值处理、数据类型转换和数据标准化等。
3. 数据去重的方法有哪些?
数据去重的方法包括基于列去重、基于行去重和基于列和行的去重。基于列去重是指对某一列中的重复数据进行去重,基于行去重是指对数据表中的重复行进行去重,基于列和行的去重是指同时对某一列和数据表中的重复行进行去重。
4. 缺失值处理的方法有哪些?
缺失值处理的方法包括删除缺失值、插值法、使用相似样本填补缺失值等。删除缺失值是指直接删除包含缺失值的行或列;插值法是指通过对已有数据进行插值估计缺失值;使用相似样本填补缺失值是指利用具有相似特征的样本来填补缺失值。
5. 异常值处理的方法有哪些?
异常值处理的方法包括基于统计学方法、基于聚类方法和基于规则的方法。基于统计学方法是指利用统计学方法对数据进行描述和分析,发现异常值并进行处理;基于聚类方法是指利用聚类算法将数据分成不同的类别,对于不属于任何类别的数据视为异常值并进行处理;基于规则的方法是指利用领域知识或经验规则对数据进行分析和处理。
6. 数据类型转换的方法有哪些?
数据类型转换的方法包括数值型类型转换、字符型类型转换和日期型类型转换等。数值型类型转换是指将数据从字符串类型转换为数值类型,字符型类型转换是指将数据从数值类型转换为字符串类型,日期型类型转换是指将数据从字符串类型转换为日期类型。
7. 数据标准化的方法有哪些?
数据标准化的方法包括最小-最大标准化、z-score标准化和小数定标标准化等。最小-最大标准化是指将数据缩放到[0,1]区间内;z-score标准化是指将数据转换为均值为0,标准差为1的正态分布;小数定标标准化是指将数据除以一个比较大的基数,使得所有数据都在[-1,1]之间。
阅读全文