densenet网络结构pytorch实现
时间: 2023-11-20 09:43:33 浏览: 106
DenseNet是一种深度卷积神经网络,通过密集连接(dense connection)的方式将不同层的特征图进行连接,以提高特征的重用和信息流动性。下面是使用PyTorch实现DenseNet网络结构的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义DenseNet的基本单元
class BasicBlock(nn.Module):
def __init__(self, in_channels, growth_rate):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_channels)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_channels, growth_rate, kernel_size=3, padding=1, bias=False)
def forward(self, x):
out = self.conv1(self.relu(self.bn1(x)))
out = torch.cat([x, out], 1) # 在通道维度上进行连接
return out
# 定义DenseNet网络结构
class DenseNet(nn.Module):
def __init__(self, num_blocks, growth_rate=32, num_classes=10):
super(DenseNet, self).__init__()
self.in_channels = 64
# 第一层卷积
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False)
# DenseBlock层
self.dense_blocks = nn.ModuleList([])
self.transition_blocks = nn.ModuleList([])
for i in range(len(num_blocks)):
num_channels = self.in_channels + i * growth_rate
self.dense_blocks.append(self._make_dense_block(num_channels, growth_rate, num_blocks[i]))
self.in_channels = num_channels + num_blocks[i] * growth_rate
if i != len(num_blocks) - 1:
self.transition_blocks.append(self._make_transition_block(self.in_channels))
self.bn = nn.BatchNorm2d(self.in_channels)
self.relu = nn.ReLU(inplace=True)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(self.in_channels, num_classes)
def forward(self, x):
out = self.conv1(x)
for i in range(len(self.dense_blocks)):
out = self.dense_blocks[i](out)
if i != len(self.dense_blocks) - 1:
out = self.transition_blocks[i](out)
out = self.relu(self.bn(out))
out = self.avgpool(out)
out = torch.flatten(out, 1)
out = self.fc(out)
return out
def _make_dense_block(self, in_channels, growth_rate, num_blocks):
layers = []
for _ in range(num_blocks):
layers.append(BasicBlock(in_channels, growth_rate))
in_channels += growth_rate
return nn.Sequential(*layers)
def _make_transition_block(self, in_channels):
block = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels, in_channels // 2, kernel_size=1, bias=False),
nn.AvgPool2d(kernel_size=2, stride=2)
)
return block
# 创建DenseNet模型
model = DenseNet([6, 12, 24, 16], growth_rate=32, num_classes=1000)
# 输出模型结构
print(model)
```
阅读全文