Densenet实现灰色图像到灰色图像的代码。映射前后的每个图像都用一个100*4096的二维数组表示(一个二维数组保存在一个TXT中,已经保存成二维数组形式了),映射前后的txt分别保存在两个文件夹中,每个文件夹有240个txt,加入数据归一化,数据集划分,训练过程,最后能实现输入一个二维数组可以输出映射后的二维数组的效果
时间: 2024-02-12 12:05:13 浏览: 73
首先,需要将数据读入并进行归一化处理,可以使用以下代码:
```python
import os
import numpy as np
def read_data(folder_path):
data = []
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
arr = np.loadtxt(file_path)
arr = arr / 255.0 # 归一化
data.append(arr)
return np.array(data)
input_folder = "input_folder"
output_folder = "output_folder"
input_data = read_data(input_folder)
output_data = read_data(output_folder)
```
接下来,可以使用PyTorch实现Densenet模型。以下是一个简单的Densenet实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import densenet121
class Densenet(nn.Module):
def __init__(self):
super(Densenet, self).__init__()
self.densenet = densenet121(pretrained=True)
self.linear = nn.Linear(1000, 4096)
def forward(self, x):
x = self.densenet(x)
x = self.linear(x)
return x
```
接下来,可以定义数据集和数据加载器,使用PyTorch的内置函数进行训练。以下是一个简单的训练过程:
```python
from torch.utils.data import Dataset, DataLoader
class MyDataset(Dataset):
def __init__(self, input_data, output_data):
self.input_data = input_data
self.output_data = output_data
def __len__(self):
return len(self.input_data)
def __getitem__(self, idx):
input_arr = self.input_data[idx]
output_arr = self.output_data[idx]
return input_arr, output_arr
train_ratio = 0.8
train_size = int(len(input_data) * train_ratio)
train_input = input_data[:train_size]
train_output = output_data[:train_size]
test_input = input_data[train_size:]
test_output = output_data[train_size:]
train_dataset = MyDataset(train_input, train_output)
test_dataset = MyDataset(test_input, test_output)
batch_size = 10
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Densenet().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
for batch_idx, (input_arr, output_arr) in enumerate(train_loader):
input_arr = input_arr.to(device)
output_arr = output_arr.to(device)
optimizer.zero_grad()
output = model(input_arr.unsqueeze(1).float())
loss = criterion(output, output_arr.unsqueeze(1).float())
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= len(train_loader)
test_loss = 0.0
with torch.no_grad():
for batch_idx, (input_arr, output_arr) in enumerate(test_loader):
input_arr = input_arr.to(device)
output_arr = output_arr.to(device)
output = model(input_arr.unsqueeze(1).float())
loss = criterion(output, output_arr.unsqueeze(1).float())
test_loss += loss.item()
test_loss /= len(test_loader)
print("Epoch {} Train Loss {:.6f} Test Loss {:.6f}".format(epoch+1, train_loss, test_loss))
```
最后,可以实现一个函数,输入一个二维数组,输出映射后的二维数组:
```python
def map_array(arr):
arr = arr / 255.0 # 归一化
arr = torch.tensor(arr).unsqueeze(0).unsqueeze(0).float().to(device)
with torch.no_grad():
output = model(arr)
return output.squeeze(0).squeeze(0).cpu().numpy() * 255.0
```
这样,就可以使用以上代码实现灰度图像到灰度图像的Densenet映射了。
阅读全文