基于深度学习的图像配准算法有哪些
时间: 2023-12-15 14:27:45 浏览: 132
基于深度学习的图像配准方法综述
1. 传统的深度学习迁移学习方法,如使用卷积神经网络(CNN)或循环神经网络(RNN)进行图像特征提取和匹配,如基于 VGG 网络的特征提取法。
2. 基于学习特征的图像配准算法,如使用深度学习方法进行特征提取和匹配,如基于 Siamese 神经网络的匹配法。
3. 基于深度学习的非刚性图像配准算法,如使用深度学习方法进行非刚性变形场的预测和应用,如基于 U-Net 网络的非刚性配准法。
4. 基于深度学习的多模态图像配准算法,如使用深度学习方法进行多模态图像的配准,如基于对抗网络(GAN)的多模态配准法。
5. 基于深度学习的形变建模图像配准算法,如使用深度学习方法进行形变场的预测和应用,如基于 Voxelmorph 网络的形变建模配准法。
阅读全文