Linear01Depth

时间: 2023-08-19 20:15:41 浏览: 133
Linear01Depth是一个函数,用于将深度值转换为范围在[0,1]的线性深度值。具体而言,它使用了_ZBufferParams参数来计算线性深度值。该函数定义在UnityCG.cginc文件中,可以在其中找到详细的实现代码。[2]通过将深度值除以_ZBufferParams.x乘以_ZBufferParams.y,Linear01Depth函数将深度值映射到[0,1]的范围内。这个函数在计算机图形学中经常用于深度值的处理和渲染中。
相关问题

AM:TYPE LINear //电源输出为指数型 AM[:DEPTh] 30% //调幅的百分比 , 有矛盾吗?

是有矛盾的。因为"AM:TYPE LINEAR"表示电源输出为线性型,而"AM[:DEPTh] 30%"表示调幅的百分比,这是指数型AM的特征。因此,这两个命令之间存在矛盾,需要进行调整。建议将"AM:TYPE LINEAR"修改为"AM:TYPE EXPONENTIAL",这样就与"AM[:DEPTh] 30%"一致了。

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序改成对摄像头采集的图像检测与分类输出坐标、大小和种类

首先,需要将输入的图像大小和通道数进行调整以适应模型输入。假设模型需要的输入大小为224x224,通道数为3,则可以使用OpenCV库中的resize函数将摄像头采集的图像缩放至指定大小。同时,需要将图像转换成PyTorch中的Tensor格式,并对像素值进行归一化操作。 代码如下: ```python import cv2 import numpy as np # 调整图像大小和通道数 img_size = (224, 224) img_channels = 3 # 初始化摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头图像 ret, frame = cap.read() if not ret: break # 缩放图像 frame = cv2.resize(frame, img_size) # 转换为Tensor格式,并进行归一化 frame = np.transpose(frame, (2, 0, 1)).astype(np.float32) / 255.0 frame = np.expand_dims(frame, axis=0) frame = torch.from_numpy(frame) # 调用模型进行预测 output = model(frame) # TODO: 解析输出结果,得到分类、坐标和大小信息 # 显示图像 cv2.imshow('frame', frame) # 按下q键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头 cap.release() cv2.destroyAllWindows() ``` 接下来,需要解析模型的输出结果,得到分类、坐标和大小信息。由于代码中没有给出模型输出的具体格式,这里需要根据模型输出结果进行相应的解析。 假设模型输出一个长度为4的向量,其中前两个元素表示物体的左上角坐标,后两个元素表示物体的宽度和高度,第三个元素表示物体的类别。则可以使用以下代码进行解析: ```python # 解析模型输出结果 x, y, w, h, cls = output[0] # 计算物体的右下角坐标 x2 = x + w y2 = y + h # 显示分类、坐标和大小信息 class_names = ['class1', 'class2', 'class3', 'class4', 'class5'] print('Class:', class_names[cls]) print('Position: ({}, {})-({}, {})'.format(x, y, x2, y2)) print('Size: {}x{}'.format(w, h)) ``` 最后,将以上代码整合到一起,即可完成对摄像头采集的图像进行检测与分类输出坐标、大小和种类的任务。 完整代码如下: ```python import torch import torch.nn as nn import torch.nn.functional as F import cv2 import numpy as np class Bottleneck(nn.Module): def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).__init__() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes * dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes * dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes * dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes * dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes * self.dense_depth out = torch.cat([x[:,:d,:,:], out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def __init__(self, cfg): super(DPN, self).__init__() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3] * (num_blocks[3] + 1) * dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for i, stride in enumerate(strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96, 192, 384, 768), 'out_planes': (256, 512, 1024, 2048), 'num_blocks': (3, 4, 20, 3), 'dense_depth': (16, 32, 24, 128) } return DPN(cfg) # 调整图像大小和通道数 img_size = (224, 224) img_channels = 3 # 初始化模型 model = DPN92() model.load_state_dict(torch.load('dpn92.pth', map_location='cpu')) model.eval() # 初始化摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头图像 ret, frame = cap.read() if not ret: break # 缩放图像 frame = cv2.resize(frame, img_size) # 转换为Tensor格式,并进行归一化 frame = np.transpose(frame, (2, 0, 1)).astype(np.float32) / 255.0 frame = np.expand_dims(frame, axis=0) frame = torch.from_numpy(frame) # 调用模型进行预测 output = model(frame) # 解析模型输出结果 x, y, w, h, cls = output[0] x, y, w, h, cls = int(x), int(y), int(w), int(h), int(cls) # 计算物体的右下角坐标 x2 = x + w y2 = y + h # 显示分类、坐标和大小信息 class_names = ['class1', 'class2', 'class3', 'class4', 'class5'] print('Class:', class_names[cls]) print('Position: ({}, {})-({}, {})'.format(x, y, x2, y2)) print('Size: {}x{}'.format(w, h)) # 在图像上绘制矩形框 cv2.rectangle(frame, (x, y), (x2, y2), (0, 255, 0), 2) # 显示图像 cv2.imshow('frame', frame) # 按下q键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头 cap.release() cv2.destroyAllWindows() ```
阅读全文

相关推荐

最新推荐

recommend-type

嵌入式-嵌入式产品级项目之洗衣机程序设计-STM32-优秀毕业设计.zip

嵌入式_嵌入式产品级项目之洗衣机程序设计_STM32_优秀毕业设计
recommend-type

使用Python复制Black Litterman模型。Black-Literman模型创造性地将投资者

使用Python复制Black Litterman模型。Black-Literman模型创造性地将投资者对预期收益的主观看法与资产的市场均衡收益相结合,使用贝叶斯方法,有效地解决了Markowitz均值收益问题
recommend-type

毕业设计论文SpringBoot+Vue茶叶销售系统.docx

毕业设计论文
recommend-type

毕业设计 基于即时学习LWPLS的风电功率预测模型python源码+数据集+超详细注释.zip

毕业设计 基于即时学习LWPLS的风电功率预测模型python源码+数据集+超详细注释.zip 【项目介绍】 该项目是一个毕业设计课题,专注于开发一个高效、准确的风电功率预测模型。该项目采用了即时学习(Just-In-Time Learning, JITL)策略,并结合局部加权偏最小二乘法(Locally Weighted Partial Least Squares, LWPLS)作为预测算法的核心,以实现对风电功率的精确预测。 项目核心要素: 即时学习方法:即时学习是一种根据当前输入数据实时选择相似历史数据来进行预测的方法。这种方法能够动态地适应风电数据的非线性和时变性,从而提高预测的准确性。 局部加权偏最小二乘法:LWPLS是一种改进的偏最小二乘法,它通过在回归过程中引入局部加权,使得模型能够更好地捕捉数据的局部特征。这种方法在风电功率预测中特别有用,因为风电数据往往具有高度的时空相关性和非线性。 Python源码:项目提供了完整的Python实现代码,包括数据处理、模型训练、预测和结果评估等步骤。代码结构清晰,易于理解和扩展,方便后续的研究和应用。 数据集:项目附带了用于训练
recommend-type

我的机器人总代码;用于控制机器人的各种运动

我的机器人总代码;用于控制机器人的各种运动
recommend-type

WPF渲染层字符绘制原理探究及源代码解析

资源摘要信息: "dotnet 读 WPF 源代码笔记 渲染层是如何将字符 GlyphRun 画出来的" 知识点详细说明: 1. .NET框架与WPF(Windows Presentation Foundation)概述: .NET框架是微软开发的一套用于构建Windows应用程序的软件框架。WPF是.NET框架的一部分,它提供了一种方式来创建具有丰富用户界面的桌面应用程序。WPF通过XAML(可扩展应用程序标记语言)与后台代码的分离,实现了界面的声明式编程。 2. WPF源代码研究的重要性: 研究WPF的源代码可以帮助开发者更深入地理解WPF的工作原理和渲染机制。这对于提高性能优化、自定义控件开发以及解决复杂问题时提供了宝贵的知识支持。 3. 渲染层的基础概念: 渲染层是图形用户界面(GUI)中的一个过程,负责将图形元素转换为可视化的图像。在WPF中,渲染层是一个复杂的系统,它包括文本渲染、图像处理、动画和布局等多个方面。 4. GlyphRun对象的介绍: 在WPF中,GlyphRun是TextElement类的一个属性,它代表了一组字形(Glyphs)的运行。字形是字体中用于表示字符的图形。GlyphRun是WPF文本渲染中的一个核心概念,它让应用程序可以精确控制文本的渲染方式。 5. 字符渲染过程: 字符渲染涉及将字符映射为字形,并将这些字形转化为能够在屏幕上显示的像素。这个过程包括字体选择、字形布局、颜色应用、抗锯齿处理等多个步骤。了解这一过程有助于开发者优化文本渲染性能。 6. OpenXML技术: OpenXML是一种基于XML的文件格式,用于存储和传输文档数据,广泛应用于Microsoft Office套件中。在WPF中,OpenXML通常与文档处理相关,例如使用Open Packaging Conventions(OPC)来组织文档中的资源和数据。了解OpenXML有助于在WPF应用程序中更好地处理文档数据。 7. 开发案例、资源工具及应用场景: 开发案例通常指在特定场景下的应用实践,资源工具可能包括开发时使用的库、框架、插件等辅助工具,应用场景则描述了这些工具和技术在现实开发中如何被应用。深入研究这些内容能帮助开发者解决实际问题,并提升其项目实施能力。 8. 文档教程资料的价值: 文档教程资料是开发者学习和参考的重要资源,它们包含详细的理论知识、实际操作案例和最佳实践。掌握这些资料中的知识点能够帮助开发者快速成长,提升项目开发的效率和质量。 9. .md文件的使用: .md文件通常指的是Markdown格式的文档。Markdown是一种轻量级标记语言,允许人们使用易读易写的纯文本格式编写文档,然后转换成有效的XHTML(或者HTML)文档。这种格式的文档非常适合编写教程、文档和开发笔记,因为它简洁且兼容性好。 通过以上知识点的解释,可以看出该资源文件是对WPF渲染机制特别是字符渲染过程的深入分析。开发者通过阅读这份笔记,可以更好地理解WPF内部工作原理,进而在实际开发中实现更高效的渲染和更精确的控制。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Twisted.trial:深入探索单元测试框架的内部工作机制

![Twisted.trial:深入探索单元测试框架的内部工作机制](https://files.realpython.com/media/Threading.3eef48da829e.png) # 1. Twisted.trial框架概述 Twisted.trial是Twisted框架的一部分,它是一个用于Python的单元测试框架,专门设计来支持异步编程。Twisted框架本身是一个事件驱动的网络引擎,支持多种传输层协议,如TCP、UDP、SSL等,并且能够用于开发各种网络应用,如服务器、客户端、分布式服务等。 Twisted.trial为编写测试用例提供了一个结构化和扩展性的平台,它
recommend-type

根据设定的阈值(比如一定百分比的相似度),判断二维码内容和图片内容是否匹配代码

在Python中,我们可以使用`skimage`库进行图像处理,并结合一些机器学习库如`scikit-image`或`OpenCV`来进行特征提取和相似度计算。下面是一个简单的例子,假设我们已经使用`pyzbar`库识别了二维码内容并保存为字符串`qr_code`,图片内容保存在`img_path`: ```python from skimage.feature import match_descriptors from skimage.measure import compare_ssim import cv2 # 加载图片 ref_image = cv2.imread(img_path
recommend-type

海康精简版监控软件:iVMS4200Lite版发布

资源摘要信息: "海康视频监控精简版监控显示" 是指海康威视公司开发的一款视频监控软件的轻量级版本。该软件面向需要在计算机上远程查看监控视频的用户,提供了基本的监控显示功能,而不需要安装完整的、资源占用较大的海康威视视频监控软件。用户通过这个精简版软件可以在电脑上实时查看和管理网络摄像机的画面,实现对监控区域的动态监视。 海康威视作为全球领先的视频监控产品和解决方案提供商,其产品广泛应用于安全防护、交通监控、工业自动化等多个领域。海康威视的产品线丰富,包括网络摄像机、DVR、NVR、视频综合管理平台等。海康的产品不仅在国内市场占有率高,而且在全球市场也具有很大的影响力。 描述中所指的“海康视频监控精简版监控显示”是一个软件或插件,它可能是“iVMS-4200Lite”这一系列软件产品之一。iVMS-4200Lite是海康威视推出的适用于个人和小型商业用户的一款简单易用的视频监控管理软件。它允许用户在个人电脑上通过网络查看和管理网络摄像机,支持多画面显示,并具备基本的录像回放功能。此软件特别适合初次接触海康威视产品的用户,或者是资源有限、对软件性能要求不是特别高的应用场景。 在使用“海康视频监控精简版监控显示”软件时,用户通常需要具备以下条件: 1. 与海康威视网络摄像机或者视频编码器相连接的网络环境。 2. 电脑上安装有“iVMS4200Lite_CN*.*.*.*.exe”这个精简版软件的可执行程序。 3. 正确的网络配置以及海康设备的IP地址,用户名和密码等信息,以便软件能够连接和管理网络摄像机。 该软件一般会有以下核心功能特点: 1. 支持多协议接入:兼容海康威视及其他主流品牌网络摄像机和视频编码器。 2. 实时视频浏览:支持多通道实时视频显示,用户可以根据需要选择合适的显示布局。 3. 远程控制:可以远程控制摄像机的PTZ(平移/倾斜/缩放)功能,方便监视和管理。 4. 录像回放:能够远程查看历史录像资料,进行视频资料的回放、检索和下载。 5. 异常报警处理:能够接收和显示网络摄像机的报警信号,并进行相关事件的处理。 由于该软件是精简版,其功能可能会比海康威视的全功能版软件受限,例如:缺少一些高级管理功能、用户界面可能不够华丽、第三方集成支持较少等。但即便如此,它在保证基本的视频监控显示和管理需求的同时,仍能为用户提供轻便和高效的监控体验。 考虑到海康威视在安全和隐私方面的责任,使用该软件时还需要注意数据的保护,确保监控视频内容不被未授权的第三方访问。此外,随着技术的发展和用户需求的变化,海康威视可能会不断更新和升级其软件,因此建议用户及时关注并更新到最新版本,以便享受更加稳定和丰富的功能体验。