将AlexNet的输入层改为适合list数据的代码并定义损失函数
时间: 2023-12-03 10:44:12 浏览: 69
alexnet-代码+数据集
下面是将AlexNet的输入层改为适合list数据的代码:
```python
import torch.nn as nn
class AlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x
```
对于损失函数,根据实际任务的不同,可以选择不同的损失函数。常用的损失函数包括交叉熵损失函数、均方误差损失函数等。以下是交叉熵损失函数的定义:
```python
import torch.nn as nn
criterion = nn.CrossEntropyLoss()
```
在实际训练中,可以使用该损失函数来计算模型输出与真实标签之间的差距,并根据该差距来更新模型参数,使得模型的输出逐渐接近真实标签。
阅读全文