APES算法及代码实现
时间: 2023-12-01 21:59:06 浏览: 171
APES算法是一种基于粒子群优化算法(PSO)的新型优化算法,用于解决多目标优化问题。其核心思想是维护一个帕累托最优解集合,通过对解集合中的解进行调整,寻找更好的解。下面是APES算法的代码实现:
```python
import random
class APES:
def __init__(self, obj_func, dim, pop_size, archive_size, max_iter):
self.obj_func = obj_func
self.dim = dim
self.pop_size = pop_size
self.archive_size = archive_size
self.max_iter = max_iter
self.pop = [] # 种群
self.archive = [] # 存档
self.gbest = None # 全局最优解
self.gbest_fitness = None # 全局最优解对应的适应度值
self.init_pop() # 初始化种群
def init_pop(self):
for i in range(self.pop_size):
particle = [random.uniform(-5, 5) for j in range(self.dim)]
self.pop.append(particle)
self.update_archive(self.pop)
self.gbest = self.archive[0]
self.gbest_fitness = self.obj_func(self.gbest)
def update_archive(self, solutions):
for solution in solutions:
fitness = self.obj_func(solution)
if len(self.archive) < self.archive_size:
self.archive.append((solution, fitness))
else:
worst_solution = max(self.archive, key=lambda x:x[1])
if fitness < worst_solution[1]:
self.archive.remove(worst_solution)
self.archive.append((solution, fitness))
def update_gbest(self):
for solution, fitness in self.archive:
if fitness < self.gbest_fitness:
self.gbest = solution
self.gbest_fitness = fitness
def run(self):
for i in range(self.max_iter):
for j in range(self.pop_size):
particle = self.pop[j]
velocity = [random.uniform(-1, 1) for k in range(self.dim)]
new_particle = [particle[k] + velocity[k] for k in range(self.dim)]
self.pop[j] = new_particle
self.update_archive(self.pop)
self.update_gbest()
return self.gbest_fitness, self.gbest
```
其中,`obj_func`是需要优化的目标函数,`dim`是解向量的维度,`pop_size`是种群大小,`archive_size`是存档大小,`max_iter`是最大迭代次数。`init_pop`函数用于初始化种群,`update_archive`函数用于更新存档,`update_gbest`函数用于更新全局最优解。`run`函数是算法的主函数,其中包含粒子的运动公式,以及对种群和存档的更新。
阅读全文