利用dsp28335 写一个机械臂三闭环控制

时间: 2023-10-06 17:09:17 浏览: 59
机械臂三闭环控制一般包括位置环、速度环和电流环。在DSP28335芯片上实现机械臂三闭环控制的步骤如下: 1.硬件连接 将编码器与芯片的QEP模块连接,将电机的三相电流通过功率电子模块输出。 2.程序设计 首先定义位置环、速度环和电流环的PID参数,然后编写PID控制器的代码。在位置环中,通过读取编码器信号计算电机转角,然后与给定位置进行比较,输出速度指令;在速度环中,通过读取编码器信号计算电机转速,然后与给定速度进行比较,输出电流指令;在电流环中,通过读取电流传感器信号计算电机电流,然后与给定电流进行比较,输出PWM信号控制电机。 3.调试 将机械臂连接到电源和控制器,进行调试。可以通过串口发送命令,设置给定位置和速度,观察机械臂的运动和电机的电流变化,调整PID参数,直到良好的三闭环控制效果。 需要注意的是,机械臂三闭环控制的实现需要考虑编码器分辨率、电机参数、PID参数等因素,需要根据具体情况进行调整。
相关问题

利用dsp28335 写一个机械臂三闭环控制代码

以下是一个简单的机械臂三闭环控制的代码示例,基于DSP28335芯片和C语言编写: ```c #include "DSP2833x_Device.h" #include "DSP2833x_Examples.h" // 定义PID参数 #define KP_POSITION 0.1 #define KI_POSITION 0.01 #define KD_POSITION 0.05 #define KP_VELOCITY 0.05 #define KI_VELOCITY 0.005 #define KD_VELOCITY 0.025 #define KP_CURRENT 0.01 #define KI_CURRENT 0.001 #define KD_CURRENT 0.005 // 定义全局变量 float32 desiredPosition = 0.0; // 目标位置 float32 desiredVelocity = 0.0; // 目标速度 float32 desiredCurrent = 0.0; // 目标电流 float32 currentPosition = 0.0; // 当前位置 float32 currentVelocity = 0.0; // 当前速度 float32 currentCurrent = 0.0; // 当前电流 float32 positionError = 0.0; // 位置误差 float32 velocityError = 0.0; // 速度误差 float32 currentError = 0.0; // 电流误差 float32 positionIntegral = 0.0; // 位置积分项 float32 velocityIntegral = 0.0; // 速度积分项 float32 currentIntegral = 0.0; // 电流积分项 float32 positionDerivative = 0.0; // 位置微分项 float32 velocityDerivative = 0.0; // 速度微分项 float32 currentDerivative = 0.0; // 电流微分项 float32 lastPositionError = 0.0; // 上一次位置误差 float32 lastVelocityError = 0.0; // 上一次速度误差 float32 lastCurrentError = 0.0; // 上一次电流误差 float32 positionOutput = 0.0; // 位置环输出 float32 velocityOutput = 0.0; // 速度环输出 float32 currentOutput = 0.0; // 电流环输出 // 定义PID控制器 void positionPID(void) { positionError = desiredPosition - currentPosition; // 计算位置误差 positionIntegral += positionError; // 计算位置积分项 positionDerivative = positionError - lastPositionError; // 计算位置微分项 positionOutput = KP_POSITION * positionError + KI_POSITION * positionIntegral + KD_POSITION * positionDerivative; // 计算位置环输出 lastPositionError = positionError; // 更新上一次位置误差 } void velocityPID(void) { velocityError = desiredVelocity - currentVelocity; // 计算速度误差 velocityIntegral += velocityError; // 计算速度积分项 velocityDerivative = velocityError - lastVelocityError; // 计算速度微分项 velocityOutput = KP_VELOCITY * velocityError + KI_VELOCITY * velocityIntegral + KD_VELOCITY * velocityDerivative; // 计算速度环输出 lastVelocityError = velocityError; // 更新上一次速度误差 } void currentPID(void) { currentError = desiredCurrent - currentCurrent; // 计算电流误差 currentIntegral += currentError; // 计算电流积分项 currentDerivative = currentError - lastCurrentError; // 计算电流微分项 currentOutput = KP_CURRENT * currentError + KI_CURRENT * currentIntegral + KD_CURRENT * currentDerivative; // 计算电流环输出 lastCurrentError = currentError; // 更新上一次电流误差 } // 主函数 void main() { // 初始化系统时钟和GPIO InitSysCtrl(); InitGpio(); // 初始化PWM模块 InitEPwm1Gpio(); InitEPwm2Gpio(); InitEPwm3Gpio(); InitEPwm4Gpio(); InitEPwm5Gpio(); InitEPwm6Gpio(); InitEPwm1(); InitEPwm2(); InitEPwm3(); InitEPwm4(); InitEPwm5(); InitEPwm6(); // 初始化QEP模块 InitEQep1Gpio(); InitEQep1(); EQep1Regs.QPOSMAX = 0xFFFFFFFF; // 设置编码器最大值 // 初始化ADC模块 InitAdc(); // 主循环 while (1) { currentPosition = EQep1Regs.QPOSCNT * 360.0 / 4096.0; // 读取编码器信号,计算电机转角 currentVelocity = currentPosition - lastPosition; // 计算电机转速 lastPosition = currentPosition; // 更新上一次电机转角 currentCurrent = AdcResult.ADCRESULT0 * 3.0 / 4096.0 - 1.5; // 读取电流传感器信号,计算电机电流 positionPID(); // 执行位置环 velocityPID(); // 执行速度环 currentPID(); // 执行电流环 EPwm1Regs.CMPA.half.CMPA = 1500 + currentOutput; // 输出PWM信号,控制电机 EPwm2Regs.CMPA.half.CMPA = 1500 - currentOutput; EPwm3Regs.CMPA.half.CMPA = 1500 + currentOutput; EPwm4Regs.CMPA.half.CMPA = 1500 - currentOutput; EPwm5Regs.CMPA.half.CMPA = 1500 + currentOutput; EPwm6Regs.CMPA.half.CMPA = 1500 - currentOutput; DELAY_US(1000); // 延时1ms } } ``` 需要注意的是,以上代码仅作为示例,实际应用时需要根据具体情况进行修改和优化。

利用dsp28335写出机械臂三闭环控制

以下是一个基于DSP28335的机械臂三闭环控制的简单示例代码。为简化代码,这里只考虑一个轴(例如机械臂的关节)的控制。 ```c // 定义位置环PID参数 float kp_pos = 1.0; float ki_pos = 0.1; float kd_pos = 0.01; // 定义速度环PID参数 float kp_vel = 10.0; float ki_vel = 1.0; float kd_vel = 0.1; // 定义电流环PI参数 float kp_cur = 2.0; float ki_cur = 0.2; // 定义位置反馈和速度反馈 float pos_fb, vel_fb; // 定义位置环控制量和速度环控制量 float pos_ctl, vel_ctl; // 定义电流环控制量 float cur_ctl; // 计算位置误差 float pos_err = pos_ref - pos_fb; // 计算位置环控制量 pos_ctl = kp_pos * pos_err + ki_pos * pos_integ + kd_pos * pos_deriv; pos_integ += pos_err; pos_deriv = pos_err - pos_prev; pos_prev = pos_err; // 计算速度误差 float vel_err = vel_ref - vel_fb; // 计算速度环控制量 vel_ctl = kp_vel * vel_err + ki_vel * vel_integ + kd_vel * vel_deriv; vel_integ += vel_err; vel_deriv = vel_err - vel_prev; vel_prev = vel_err; // 计算电流误差 float cur_err = vel_ctl - vel_fb; // 计算电流环控制量 cur_ctl = kp_cur * cur_err + ki_cur * cur_integ; cur_integ += cur_err; // 输出电流控制量到电机驱动器 set_motor_current(cur_ctl); ``` 需要注意的是,这只是一个简单的示例代码,实际应用中需要根据具体的机械臂和控制系统进行适当的修改和优化。

相关推荐

最新推荐

三大电机控制方案之DSP篇(1):TMS320F28335

TMS320F28335数字信号处理器是属于C2000系列的一款浮点DSP控制器。与以往的定点DSP相比,该器件的精度高,成本低, 功耗小,性能高,外设集成度高,数据以及程序存储量大,A/D转换更精确快速等。

DSP中的三大电机控制方案之DSP篇:TMS320F28335

目前的大部分电机都把电流环控制作为DSP的一个协处理来考虑,而速度或位置环控制则由 DSP芯片来实现。一般情况下,由于位置控制比较灵活,且差异性比较大,很难做到通用性,所以位置环一般由DSP来直接完成;但速度和...

DSP28335的McBsp配置为SPI接口的DMA的收发配置程序.docx

DSP28335的McBsp配置为SPI接口的DMA的收发配置程序,程序中完成了MCBSP配置为SPI工作模式的方式,并通过DMA完成数据收发操作

dsp28335开发总结

其实这条语句在DSP等系统开发中经常要用到,比如更改某些配置后需要延时几个时钟周期才能够生效,这时asm(” RPT #7 || NOP”)便可以闪亮登场了。虽然这个功能我们都知道而且经常使用,但是具体的细节很多人却不知道...

面 向 对 象 课 程 设 计(很详细)

本次面向对象课程设计项目是由西安工业大学信息与计算科学051002班级的三名成员常丽雪、董园园和刘梦共同完成的。项目的题目是设计一个ATM银行系统,旨在通过该系统实现用户的金融交易功能。在接下来的一个星期里,我们团队共同致力于问题描述、业务建模、需求分析、系统设计等各个方面的工作。 首先,我们对项目进行了问题描述,明确了项目的背景、目的和主要功能。我们了解到ATM银行系统是一种自动提款机,用户可以通过该系统实现查询余额、取款、存款和转账等功能。在此基础上,我们进行了业务建模,绘制了系统的用例图和活动图,明确了系统与用户之间的交互流程和功能流程,为后续设计奠定了基础。 其次,我们进行了需求分析,对系统的功能性和非功能性需求进行了详细的梳理和分析。我们明确了系统的基本功能模块包括用户认证、账户管理、交易记录等,同时也考虑到了系统的性能、安全性和可靠性等方面的需求。通过需求分析,我们确立了项目的主要目标和设计方向,为系统的后续开发工作奠定了基础。 接着,我们进行了系统的分析工作,对系统进行了功能分解、结构分析和行为分析。我们对系统的各个模块进行了详细的设计,明确了模块之间的关联和交互关系,保证系统的整体性和稳定性。通过系统分析,我们为系统的设计和实现提供了详细的思路和指导,确保系统的功能和性能达到用户的需求和期望。 最后,我们进行了系统的设计工作,绘制了系统的体系结构图、类图和时序图等,明确了系统的整体架构和各个模块的具体实现方式。我们根据需求分析和系统分析的结果,结合面向对象设计的原则和方法,设计出了一个高效、稳定和灵活的ATM银行系统。通过系统设计,我们为系统的后续开发和调试提供了具体的设计方案和指导。 综上所述,通过本次面向对象课程设计项目,我们不仅学习到了面向对象设计的理论知识和实践技能,也掌握了团队合作和系统开发的经验。通过不懈努力和合作,我们成功完成了ATM银行系统的设计工作,为系统的后续开发和实现奠定了坚实的基础。希望通过这次设计项目的实践,我们能够更好地理解和应用面向对象设计的方法和思想,为未来的学习和工作打下坚实的基础。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

Python标签编码错误对程序造成的影响

# 1. Python标签编码错误的介绍 #### 1.1 Python编码问题的概述 编码问题在Python开发中是一个常见而又棘手的难题。首先,我们需了解什么是编码问题,即数据在不同编码方式下出现混乱或乱码的情况。Python中对编码有着复杂的定义和处理方式。因为Python 3默认采用Unicode编码,但在实际应用中仍会遇到编码错误的情况。 #### 1.2 常见的Python编码错误 Python编码错误主要包括解析错误、UnicodeDecodeError错误和UnicodeEncodeError错误。解析错误通常是因为源代码文件的编码格式与Python解释器期望的格式不一致。

那我该怎么获取端口呢,需不需要付费之类

获取端口的方法取决于你选择的部署方式。以下是一些常见的部署选项: 1. 本地部署:如果你想在本地环境中运行 HackChat,你可以选择一个未被占用的端口号。常用的端口号范围是 1024 到 65535。确保你选择的端口没有被其他应用程序使用。 2. 云平台:如果你选择使用云平台(如 AWS、Azure、Google Cloud 等)部署 HackChat,你需要查看该云平台的文档以了解如何分配和获取端口。通常,云平台会根据你的配置为你分配一个端口号。这可能需要一些费用,具体取决于你选择的服务和计划。 3. 共享主机:如果你选择使用共享主机(如 Heroku、Netlify 等)部署 H

复杂可编程逻辑器件ppt课件.ppt

可编程逻辑器件(PLD)是一种由用户根据自己要求来构造逻辑功能的数字集成电路。与传统的具有固定逻辑功能的74系列数字电路不同,PLD本身并没有确定的逻辑功能,而是可以由用户利用计算机辅助设计,例如通过原理图或硬件描述语言(HDL)来表示设计思想。通过编译和仿真,生成相应的目标文件,再通过编程器或下载电缆将设计文件配置到目标器件中,这样可编程器件(PLD)就可以作为满足用户需求的专用集成电路使用。 在PLD的基本结构中,包括与门阵列(AND-OR array)、或门阵列(OR array)、可编程互连线路(interconnect resources)和输入/输出结构。与门阵列和或门阵列是PLD的核心部分,用于实现逻辑功能的组合,并配合互连线路连接各个部件。PLD的输入/输出结构用于与外部设备进行通信,完成数据输入和输出的功能。 除了PLD,还有复杂可编程器件(CPLD)、现场可编程门阵列(FPGA)和系统可编程逻辑器件(ispPAC)等不同类型的可编程逻辑器件。这些器件在逻辑功能实现、资源密度、时钟分配等方面有所不同,可以根据具体应用需求选择合适的器件类型。 对于可编程逻辑器件的设计流程,一般包括需求分析、设计规划、逻辑设计、综合与优化、布局布线、仿真验证和最终生成目标文件等步骤。设计师需要根据具体的需求和功能要求,使用适当的工具和方法完成各个阶段的设计工作,最终实现满足用户要求的可编程逻辑器件设计。 通过学习可编程逻辑器件的分类、特点、基本结构、工作原理和设计流程,可以更深入地了解数字集成电路的设计和实现原理,提高工程师的设计能力和应用水平。可编程逻辑器件的灵活性和可重复编程能力,使其在电子产品的设计与开发中具有重要的作用,不仅可以加快产品研发的速度,还可以降低成本和提高可维护性。 总的来说,可编程逻辑器件是一种灵活可定制的数字集成电路,可以根据用户需求实现不同的逻辑功能。通过适当的设计流程和工具支持,可以高效地完成器件的设计和验证工作,从而实现更加智能、功能更强大的电子产品。深入了解和掌握可编程逻辑器件的原理和应用,对于提升工程师的技术水平和创新能力具有重要意义。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依