基于pytorch的人脸表情识别
时间: 2023-07-25 20:26:11 浏览: 82
基于MTCNN+arcface的人脸检测识别(pytorch)
5星 · 资源好评率100%
以下是一个基于PyTorch的人脸表情识别的代码示例,代码中使用了卷积神经网络(CNN)来进行训练和预测:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# 定义训练和测试数据集
train_transforms = transforms.Compose([
transforms.RandomResizedCrop(48),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
test_transforms = transforms.Compose([
transforms.Resize(48),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.ImageFolder('train_dir', transform=train_transforms)
test_dataset = datasets.ImageFolder('test_dir', transform=test_transforms)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)
# 定义模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.fc1 = nn.Linear(128 * 6 * 6, 512)
self.fc2 = nn.Linear(512, 7)
self.dropout = nn.Dropout(0.5)
self.pool = nn.MaxPool2d(2, 2)
self.relu = nn.ReLU()
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = self.pool(self.relu(self.conv3(x)))
x = x.view(-1, 128 * 6 * 6)
x = self.dropout(self.relu(self.fc1(x)))
x = self.fc2(x)
return x
model = CNN()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 50 == 49:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 50))
running_loss = 0.0
# 评估模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (
100 * correct / total))
```
在这个示例中,我们使用`transforms`模块对图像进行预处理,并使用`ImageFolder`和`DataLoader`加载和分批次处理数据集。然后定义了一个简单的卷积神经网络模型,并使用`CrossEntropyLoss`作为损失函数,使用`Adam`优化器进行参数优化。最后,我们使用`for`循环对模型进行训练,并在训练过程中输出损失值。在训练完成后,我们使用`torch.no_grad()`关闭梯度计算,对模型进行测试,并计算模型的准确率。
需要注意的是,这个示例中的模型和参数仅供参考,你可以根据自己的需求进行修改和调整。此外,还需要准备好人脸表情数据集,并按照一定的文件夹结构组织好数据,以便于使用`ImageFolder`加载数据。
阅读全文