echart3_2 = [] for i, r in df['MARRIAGE'].value_counts().iteritems(): echart3_2.append({'value': r, 'name': MARRIAGE[i]})
时间: 2024-05-20 10:14:12 浏览: 149
这段代码的作用是将数据框中“MARRIAGE”列的不同取值的出现次数作为饼图的数据,生成一个包含字典元素的列表。具体来说,代码中的循环遍历了“MARRIAGE”列中每个不同取值的出现次数,将其封装成一个字典元素,并添加到名为“echart3_2”的空列表中。字典元素中包含两个键值对,分别是'value'和'name',分别表示该取值的出现次数和该取值本身对应的含义。其中,MARRIAGE是一个字典,用于将数字编码的婚姻状况编码转换为对应的文字含义。最终,这个列表中的字典元素可以作为饼图的数据源,用于绘制饼图。
相关问题
fig, ax = plt.subplots(1, 2) df["Gender"].value_counts().plot.bar(color="purple", ax=ax[0]) df["Gender"].value_counts().plot.pie(autopct='%1.1f%%',shadow=True,textprops={"fontsize": 10},ax=ax[1]) fig.suptitle("Gender Frequency", fontsize=15) plt.xticks(rotation=90) plt.yticks(rotation=45) fig, ax = plt.subplots(1, 2) df["Ever_Married"].value_counts().plot.bar(color="purple", ax=ax[0]) df["Ever_Married"].value_counts().plot.pie(autopct='%1.1f%%',shadow=True,textprops={"fontsize": 10},ax=ax[1]) fig.suptitle("Marriage Frequency", fontsize=15) plt.xticks(rotation=90) plt.yticks(rotation=45)是什么意思
这段代码使用了Python的可视化库Matplotlib来生成两个子图,每个子图展示了数据框(df)中"Gender"和"Ever_Married"列的频率分布情况。
具体来说,第一行代码`fig, ax = plt.subplots(1, 2)`创建了一个包含两个子图的图形对象(fig)和一个包含两个子图轴(ax)的元组。该代码使用了Matplotlib中的`subplots()`函数和参数`(1, 2)`,表示创建一行两列的子图。
接下来的两行代码分别使用了`plot()`函数和参数`"bar"`和`"pie"`,在两个子图中分别展示了"Gender"和"Ever_Married"列的频率分布情况。其中,`value_counts()`函数用于计算每个值的频率,并使用颜色"purple"设置了柱状图和饼图的颜色。`autopct`参数用于在饼图中显示频率的百分比,并使用`shadow`参数添加了阴影,`textprops`参数用于设置显示文本的字体大小。
接着,`fig.suptitle()`函数添加了一个总标题"Gender Frequency"和"Marriage Frequency",`fontsize`参数用于设置总标题的字体大小。`plt.xticks()`和`plt.yticks()`函数用于旋转x和y轴上的标签,以便更好的显示。
getwd() setwd( "/Users/jasmma/abl") zxb=read.csv("zxb111.csv") log<-glm(frail~age+txl+BMI+ag+tx+BM+address+sex+marriage+live+smoking+drink+exercise+education+primary+DM+HP+Hrart +Cero+com+pro+income+follow+depress+anxiety+RBC+Hb+HCT+fe+Ca+P+iPTH+alb+cr+bun+com1,family = binomial,data = zxb) summary(log) log.step<-step(log) summary(log.step) # ##############制作表格######## install.packages(c("stats", "MASS", "car", "tidyverse", "knitr", "kableExtra")) library(stats) library(MASS) library(car) library(tidyverse) library(knitr) library(kableExtra) kable(summary(log.step)$coefficients, align = "c", caption = "Logistic Regression Results") %>% kable_styling(bootstrap_options = "hover", full_width = F) %>% column_spec(1, bold = T) %>% column_spec(4, color = "white", background = "steelblue") ############### 将结果转化为表格形式##### result <- data.frame( variable = names(log.step$coefficients)[-1], # 变量名称 beta = coef(log.step)[-1], # β系数 wald_stat = summary(log.step)$coefficients[-1, "z"], # Wald统计量 se = summary(log.step)$coefficients[-1, "Std. Error"], # 标准误差 or = exp(coef(log.step)[-1]), # 比值比 ci_low = exp(confint(log.step)[-1, 1]), # 置信区间下限 ci_high = exp(confint(log.step)[-1, 2]), # 置信区间上限 p_value = summary(log.step)$coefficients[-1, "Pr(>|z|)"] # P值 )
这段代码是进行 logistic 回归分析的,包括数据读入、模型拟合、模型选择以及结果展示等步骤。其中,使用step()函数进行模型选择,生成的模型结果通过summary()函数进行总结统计,并通过kable()和kableExtra()函数将结果转化为表格形式进行展示。最后,将结果保存到result数据框中。
阅读全文