用c语言写一个基于环形队列的生产者与消费者模型

时间: 2023-02-28 14:54:12 浏览: 80
生产者与消费者模型是一种多线程同步的模型,在该模型中,生产者线程负责生产数据,消费者线程负责消费数据。 使用环形队列实现生产者与消费者模型,我们可以先声明一个结构体存储队列的信息,如队列的大小、队首和队尾的位置等。 接下来,我们可以实现生产者线程的代码:生产者线程首先检查队列是否已满,如果已满,则生产者线程等待消费者线程消费数据,否则生产者线程将数据存入队列。 同样的,我们也可以实现消费者线程的代码:消费者线程首先检查队列是否为空,如果为空,则消费者线程等待生产者线程生产数据,否则消费者线程将数据从队列中取出。 为了实现多线程同步,我们可以使用互斥量(mutex)和条件变量(condition variable)实现同步。 以下是一个简单的C语言代码实现: ``` #include <pthread.h> #include <stdio.h> #include <unistd.h> #define QUEUE_SIZE 10 #define NUM_PRODUCER 5 #define NUM_CONSUMER 5 typedef struct { int buf[QUEUE_SIZE
相关问题

用c语言写一个简单的基于阻塞队列的生产者与消费者模型

### 回答1: 下面是一个简单的基于阻塞队列的生产者与消费者模型的 C 语言代码示例: ``` #include <stdio.h> #include <pthread.h> #include <semaphore.h> #define MAX_ITEMS 5 int queue[MAX_ITEMS]; int front = 0; int rear = -1; int count = 0; sem_t empty_sem; sem_t full_sem; pthread_mutex_t queue_mutex; void *producer(void *arg) { int item; while (1) { item = rand() % 100; sem_wait(&empty_sem); pthread_mutex_lock(&queue_mutex); queue[++rear] = item; count++; printf("Produced item: %d\n", item); pthread_mutex_unlock(&queue_mutex); sem_post(&full_sem); } } void *consumer(void *arg) { int item; while (1) { sem_wait(&full_sem); pthread_mutex_lock(&queue_mutex); item = queue[front++]; count--; printf("Consumed item: %d\n", item); pthread_mutex_unlock(&queue_mutex); sem_post(&empty_sem); } } int main() { pthread_t producer_thread, consumer_thread; sem_init(&empty_sem, 0, MAX_ITEMS); sem_init(&full_sem, 0, 0); pthread_mutex_init(&queue_mutex, NULL); pthread_create(&producer_thread, NULL, producer, NULL); pthread_create(&consumer_thread, NULL, consumer, NULL); pthread_join(producer_thread, NULL); pthread_join(consumer_thread, NULL); return 0; } ``` 说明:这里使用了两个信号量 `empty_sem` 和 `full_sem` 以及一个互斥锁 `queue_mutex` 来实现生产者与消费者间的同步和互斥。当队列为空时,消费者线程将等待 `full_sem` 信号量;当队列已满时,生产者线程将等待 `empty_sem` 信号量。读写队列数据时,使用互斥锁来保证 ### 回答2: 生产者-消费者模型是一种常见的多线程编程模型,在多线程环境下,由一个或多个生产者线程生成数据并将其放入缓冲区,然后由一个或多个消费者线程从缓冲区中取出数据进行消费。阻塞队列是一个可以自动阻塞或唤醒线程的队列,当队列为空时,消费者线程将被阻塞,直到有生产者线程向队列中放入数据;当队列满时,生产者线程将被阻塞,直到有消费者线程从队列中取出数据。 下面是一个基于C语言的简单生产者-消费者模型,使用阻塞队列实现。 #include <pthread.h> #include <stdio.h> #include <stdlib.h> #define MAX_QUEUE_SIZE 10 typedef struct { int data[MAX_QUEUE_SIZE]; int front; int rear; int count; pthread_mutex_t mutex; pthread_cond_t not_full; pthread_cond_t not_empty; } BlockingQueue; void init_queue(BlockingQueue* queue) { queue->front = 0; queue->rear = 0; queue->count = 0; pthread_mutex_init(&queue->mutex, NULL); pthread_cond_init(&queue->not_full, NULL); pthread_cond_init(&queue->not_empty, NULL); } void enqueue(BlockingQueue* queue, int item) { pthread_mutex_lock(&queue->mutex); while (queue->count >= MAX_QUEUE_SIZE) { pthread_cond_wait(&queue->not_full, &queue->mutex); } queue->data[queue->rear] = item; queue->rear = (queue->rear + 1) % MAX_QUEUE_SIZE; queue->count++; pthread_cond_signal(&queue->not_empty); pthread_mutex_unlock(&queue->mutex); } int dequeue(BlockingQueue* queue) { pthread_mutex_lock(&queue->mutex); while (queue->count <= 0) { pthread_cond_wait(&queue->not_empty, &queue->mutex); } int item = queue->data[queue->front]; queue->front = (queue->front + 1) % MAX_QUEUE_SIZE; queue->count--; pthread_cond_signal(&queue->not_full); pthread_mutex_unlock(&queue->mutex); return item; } void* producer(void* arg) { BlockingQueue* queue = (BlockingQueue*)arg; for (int i = 1; i <= 100; i++) { enqueue(queue, i); printf("Producer produced: %d\n", i); } pthread_exit(NULL); } void* consumer(void* arg) { BlockingQueue* queue = (BlockingQueue*)arg; for (int i = 1; i <= 100; i++) { int item = dequeue(queue); printf("Consumer consumed: %d\n", item); } pthread_exit(NULL); } int main() { BlockingQueue queue; init_queue(&queue); pthread_t producer_thread; pthread_t consumer_thread; pthread_create(&producer_thread, NULL, producer, &queue); pthread_create(&consumer_thread, NULL, consumer, &queue); pthread_join(producer_thread, NULL); pthread_join(consumer_thread, NULL); return 0; } 上述代码中,定义了一个BlockingQueue结构体来表示阻塞队列,使用互斥锁(mutex)和条件变量(cond)来实现线程之间的同步和互斥。生产者线程使用enqueue函数将数据放入队列,消费者线程使用dequeue函数从队列中取出数据。生产者线程生成1到100的数据并放入队列,消费者线程从队列中取出数据并输出。 此模型通过互斥锁和条件变量的配合,实现了生产者线程与消费者线程之间的同步,当队列满时生产者线程阻塞等待,当队列空时消费者线程阻塞等待,从而避免了线程间的数据竞争和死锁问题。 ### 回答3: 阻塞队列是一种常用的线程同步机制,它提供了安全的生产者-消费者模型。下面是一个使用C语言实现的简单的基于阻塞队列的生产者与消费者模型的示例: ```c #include <stdio.h> #include <stdlib.h> #include <pthread.h> #define BUFFER_SIZE 5 typedef struct { int buffer[BUFFER_SIZE]; int size; int in; int out; pthread_mutex_t mutex; pthread_cond_t full; pthread_cond_t empty; } Queue; void produce(Queue* q, int val) { pthread_mutex_lock(&(q->mutex)); while (q->size == BUFFER_SIZE) { pthread_cond_wait(&(q->full), &(q->mutex)); } q->buffer[q->in] = val; q->in = (q->in + 1) % BUFFER_SIZE; q->size++; pthread_cond_signal(&(q->empty)); pthread_mutex_unlock(&(q->mutex)); } int consume(Queue* q) { pthread_mutex_lock(&(q->mutex)); while (q->size == 0) { pthread_cond_wait(&(q->empty), &(q->mutex)); } int val = q->buffer[q->out]; q->out = (q->out + 1) % BUFFER_SIZE; q->size--; pthread_cond_signal(&(q->full)); pthread_mutex_unlock(&(q->mutex)); return val; } void* producer(void* arg) { Queue* q = (Queue*)arg; for (int i = 1; i <= 10; i++) { produce(q, i); printf("Produced: %d\n", i); } pthread_exit(NULL); } void* consumer(void* arg) { Queue* q = (Queue*)arg; for (int i = 1; i <= 10; i++) { int val = consume(q); printf("Consumed: %d\n", val); } pthread_exit(NULL); } int main() { Queue q; q.size = 0; q.in = 0; q.out = 0; pthread_mutex_init(&(q.mutex), NULL); pthread_cond_init(&(q.full), NULL); pthread_cond_init(&(q.empty), NULL); pthread_t producer_thread, consumer_thread; pthread_create(&producer_thread, NULL, producer, (void*)(&q)); pthread_create(&consumer_thread, NULL, consumer, (void*)(&q)); pthread_join(producer_thread, NULL); pthread_join(consumer_thread, NULL); pthread_cond_destroy(&(q.full)); pthread_cond_destroy(&(q.empty)); pthread_mutex_destroy(&(q.mutex)); return 0; } ``` 该示例中,我们定义了一个用于线程间共享的队列结构体,并使用互斥锁(`mutex`)和条件变量(`full`和`empty`)保证了生产者与消费者之间的同步。生产者通过`produce`函数将数据存入队列中,如果队列已满,则阻塞等待直到有空间可用。消费者通过`consume`函数从队列中取出数据,如果队列为空,则阻塞等待直到有数据可用。在`main`函数中创建了一个生产者线程和一个消费者线程,并使用`pthread_join`函数等待线程执行结束。 该示例中,生产者线程会依次将数值1~10存入队列中,消费者线程会依次从队列中取出数值并打印。通过互斥锁和条件变量的使用,保证了生产者与消费者之间的正确同步,避免了生产者在队列已满时继续生产以及消费者在队列为空时继续消费的问题。

用c语言写一个环形队列

好的,下面是一个用C语言实现的简单环形队列: ```c #include <stdio.h> #define SIZE 5 // 队列的大小 int queue[SIZE]; int front = -1; // 队首 int rear = -1; // 队尾 // 判断队列是否为空 int is_empty() { if (front == -1 && rear == -1) { return 1; } else { return 0; } } // 判断队列是否已满 int is_full() { if ((rear + 1) % SIZE == front) { return 1; } else { return 0; } } // 入队 void enqueue(int element) { if (is_full()) { printf("Queue is full.\n"); } else if (is_empty()) { front = 0; rear = 0; queue[rear] = element; } else { rear = (rear + 1) % SIZE; queue[rear] = element; } } // 出队 void dequeue() { if (is_empty()) { printf("Queue is empty.\n"); } else if (front == rear) { printf("Dequeued element : %d\n", queue[front]); front = -1; rear = -1; } else { printf("Dequeued element : %d\n", queue[front]); front = (front + 1) % SIZE; } } // 输出队列元素 void display() { if (is_empty()) { printf("Queue is empty.\n"); } else { int i; printf("Queue elements : "); for (i = front; i != rear; i = (i + 1) % SIZE) { printf("%d ", queue[i]); } printf("%d\n", queue[i]); } } int main() { // 测试队列 enqueue(1); enqueue(2); enqueue(3); enqueue(4); display(); dequeue(); dequeue(); display(); enqueue(5); enqueue(6); display(); enqueue(7); return 0; } ``` 这里实现的是一个可以存储5个元素的队列,当队列已满时,继续入队会提示队列已满;当队列为空时,继续出队会提示队列已空。

相关推荐

最新推荐

生产者——消费者 c语言

生产者——消费者 c语言 C语言 #include&lt;stdio.h&gt; #define size 5 int empty,full,in,out,a[size]={0},i,m=1; void produce() { int j; if(empty&gt;0) { empty--; a[in]=1; printf("生产一件产品,1为继续生产,2...

基于C语言航班信息查询与检索

主要为大家详细介绍了基于C语言航班信息查询与检索,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

C语言用栈和队列实现的回文检测功能示例

主要介绍了C语言用栈和队列实现的回文检测功能,结合具体实例形式分析了C语言栈和队列的定义及使用栈和队列进行回文检测的操作技巧,需要的朋友可以参考下

C语言使用广度优先搜索算法解决迷宫问题(队列)

主要介绍了C语言使用广度优先搜索算法解决迷宫问题,结合迷宫问题分析了C语言队列广度优先搜索算法的相关使用技巧,需要的朋友可以参考下

ExcelVBA中的Range和Cells用法说明.pdf

ExcelVBA中的Range和Cells用法是非常重要的,Range对象可以用来表示Excel中的单元格、单元格区域、行、列或者多个区域的集合。它可以实现对单元格内容的赋值、取值、复制、粘贴等操作。而Cells对象则表示Excel中的单个单元格,通过指定行号和列号来操作相应的单元格。 在使用Range对象时,我们需要指定所操作的单元格或单元格区域的具体位置,可以通过指定工作表、行号、列号或者具体的单元格地址来实现。例如,可以通过Worksheets("Sheet1").Range("A5")来表示工作表Sheet1中的第五行第一列的单元格。然后可以通过对该单元格的Value属性进行赋值,实现给单元格赋值的操作。例如,可以通过Worksheets("Sheet1").Range("A5").Value = 22来讲22赋值给工作表Sheet1中的第五行第一列的单元格。 除了赋值操作,Range对象还可以实现其他操作,比如取值、复制、粘贴等。通过获取单元格的Value属性,可以取得该单元格的值。可以通过Range对象的Copy和Paste方法实现单元格内容的复制和粘贴。例如,可以通过Worksheets("Sheet1").Range("A5").Copy和Worksheets("Sheet1").Range("B5").Paste来实现将单元格A5的内容复制到单元格B5。 Range对象还有很多其他属性和方法可供使用,比如Merge方法可以合并单元格、Interior属性可以设置单元格的背景颜色和字体颜色等。通过灵活运用Range对象的各种属性和方法,可以实现丰富多样的操作,提高VBA代码的效率和灵活性。 在处理大量数据时,Range对象的应用尤为重要。通过遍历整个单元格区域来实现对数据的批量处理,可以极大地提高代码的运行效率。同时,Range对象还可以多次使用,可以在多个工作表之间进行数据的复制、粘贴等操作,提高了代码的复用性。 另外,Cells对象也是一个非常实用的对象,通过指定行号和列号来操作单元格,可以简化对单元格的定位过程。通过Cells对象,可以快速准确地定位到需要操作的单元格,实现对数据的快速处理。 总的来说,Range和Cells对象在ExcelVBA中的应用非常广泛,可以实现对Excel工作表中各种数据的处理和操作。通过灵活使用Range对象的各种属性和方法,可以实现对单元格内容的赋值、取值、复制、粘贴等操作,提高代码的效率和灵活性。同时,通过Cells对象的使用,可以快速定位到需要操作的单元格,简化代码的编写过程。因此,深入了解和熟练掌握Range和Cells对象的用法对于提高ExcelVBA编程水平是非常重要的。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

C++中的数据库连接与操作技术

# 1. 数据库连接基础 数据库连接是在各种软件开发项目中常见的操作,它是连接应用程序与数据库之间的桥梁,负责传递数据与指令。在C++中,数据库连接的实现有多种方式,针对不同的需求和数据库类型有不同的选择。在本章中,我们将深入探讨数据库连接的概念、重要性以及在C++中常用的数据库连接方式。同时,我们也会介绍配置数据库连接的环境要求,帮助读者更好地理解和应用数据库连接技术。 # 2. 数据库操作流程 数据库操作是C++程序中常见的任务之一,通过数据库操作可以实现对数据库的增删改查等操作。在本章中,我们将介绍数据库操作的基本流程、C++中执行SQL查询语句的方法以及常见的异常处理技巧。让我们

unity中如何使用代码实现随机生成三个不相同的整数

你可以使用以下代码在Unity中生成三个不同的随机整数: ```csharp using System.Collections.Generic; public class RandomNumbers : MonoBehaviour { public int minNumber = 1; public int maxNumber = 10; private List<int> generatedNumbers = new List<int>(); void Start() { GenerateRandomNumbers();

基于单片机的电梯控制模型设计.doc

基于单片机的电梯控制模型设计是一项旨在完成课程设计的重要教学环节。通过使用Proteus软件与Keil软件进行整合,构建单片机虚拟实验平台,学生可以在PC上自行搭建硬件电路,并完成电路分析、系统调试和输出显示的硬件设计部分。同时,在Keil软件中编写程序,进行编译和仿真,完成系统的软件设计部分。最终,在PC上展示系统的运行效果。通过这种设计方式,学生可以通过仿真系统节约开发时间和成本,同时具有灵活性和可扩展性。 这种基于单片机的电梯控制模型设计有利于促进课程和教学改革,更有利于学生人才的培养。从经济性、可移植性、可推广性的角度来看,建立这样的课程设计平台具有非常重要的意义。通过仿真系统,学生可以在实际操作之前完成系统设计和调试工作,提高了实验效率和准确性。最终,通过Proteus设计PCB,并完成真正硬件的调试。这种设计方案可以为学生提供实践操作的机会,帮助他们更好地理解电梯控制系统的原理和实践应用。 在设计方案介绍中,指出了在工业领域中,通常采用可编程控制器或微型计算机实现电梯逻辑控制,虽然可编程控制器有较强的抗干扰性,但价格昂贵且针对性强。而通过单片机控制中心,可以针对不同楼层分别进行合理调度,实现电梯控制的模拟。设计中使用按键用于用户发出服务请求,LED用于显示电梯状态。通过这种设计方案,学生可以了解电梯控制系统的基本原理和实现方法,培养他们的实践操作能力和创新思维。 总的来说,基于单片机的电梯控制模型设计是一项具有重要意义的课程设计项目。通过Proteus软件与Keil软件的整合,搭建单片机虚拟实验平台,可以帮助学生更好地理解电梯控制系统的原理和实践应用,培养他们的实践操作能力和创新思维。这种设计方案不仅有利于课程和教学改革,也对学生的人才培养具有积极的促进作用。通过这样的设计方案,学生可以在未来的工作中更好地应用所学知识,为电梯控制系统的研发和应用做出贡献。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依