机器学习中data['CD3+'] = pd.to_numeric(data['CD3+'], errors='coerce') data['CD4+'] = pd.to_numeric(data['CD4+'], errors='coerce') data['CD8+'] = pd.to_numeric(data['CD8+'], errors='coerce') data['CRP'] = pd.to_numeric(data['CRP'], errors='coerce')有何意义
时间: 2023-10-14 14:06:12 浏览: 89
这段代码的意义是将数据集中的指定列('CD3+','CD4+','CD8+'和'CRP')的值转换为数值类型,以便于后续的数据处理和分析。通过指定errors='coerce'参数,如果某些值无法转换为数值类型,将会被设置为NaN(Not a Number),从而避免了数据处理过程中的错误。这是一个常见的数据预处理步骤,可以将数据集中的非数值类型的数据转换为数值类型,以便于后续的建模和分析。
相关问题
帮我用python写代码,O2O优惠券使用预测,提供用户在2016年1月1日至2016年6月30日之间真实线上线下消费行为,预测用户在2016年7月领取优惠券后15天以内的使用情况。训练集为"F:\Pycharm\期末考查题目(二选一)\题目一\data\ccf_offline_stage1_train.csv",测试集为"F:\Pycharm\期末考查题目(二选一)\题目一\data\ccf_offline_stage1_test_revised.csv"。注意,其中存在非数字列'Date_received',请帮我做适当处理,根据优惠券发放及核销情况,构建不同的特征:用户领取的优惠券数量;用户消费过的优惠券数量;用户与商家间的距离。
好的,这是一个比较典型的机器学习项目,需要对数据进行预处理、特征工程、模型训练和预测。我会帮你一步步实现,首先,我们需要导入一些必要的库:pandas、numpy、sklearn等。请确认你已经安装了这些库,如果没有,请使用pip install命令进行安装。以下是代码实现:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import MinMaxScaler
```
接着,我们需要加载训练集和测试集数据,并对数据进行预处理,包括删除空值、将非数字列转换为数字列等。以下是代码实现:
```python
# 加载训练集和测试集
train_df = pd.read_csv('F:\Pycharm\期末考查题目(二选一)\题目一\data\ccf_offline_stage1_train.csv', header=None)
test_df = pd.read_csv('F:\Pycharm\期末考查题目(二选一)\题目一\data\ccf_offline_stage1_test_revised.csv', header=None)
# 删除空值
train_df.dropna(inplace=True)
test_df.dropna(inplace=True)
# 将非数字列转换为数字列
train_df[6] = train_df[6].apply(lambda x: str(x)[:8])
train_df[5] = train_df[5].apply(lambda x: str(x)[:8])
train_df[2] = train_df[2].apply(lambda x: str(x)[:8])
train_df[4] = train_df[4].apply(lambda x: str(x)[:8])
train_df[7] = train_df[7].apply(lambda x: str(x)[:8])
train_df[3] = train_df[3].apply(lambda x: str(x)[:8])
train_df[1] = train_df[1].apply(lambda x: str(x)[:8])
test_df[6] = test_df[6].apply(lambda x: str(x)[:8])
test_df[5] = test_df[5].apply(lambda x: str(x)[:8])
test_df[2] = test_df[2].apply(lambda x: str(x)[:8])
test_df[4] = test_df[4].apply(lambda x: str(x)[:8])
test_df[7] = test_df[7].apply(lambda x: str(x)[:8])
test_df[3] = test_df[3].apply(lambda x: str(x)[:8])
test_df[1] = test_df[1].apply(lambda x: str(x)[:8])
train_df[6] = pd.to_numeric(train_df[6], errors='coerce')
train_df[5] = pd.to_numeric(train_df[5], errors='coerce')
train_df[2] = pd.to_numeric(train_df[2], errors='coerce')
train_df[4] = pd.to_numeric(train_df[4], errors='coerce')
train_df[7] = pd.to_numeric(train_df[7], errors='coerce')
train_df[3] = pd.to_numeric(train_df[3], errors='coerce')
train_df[1] = pd.to_numeric(train_df[1], errors='coerce')
test_df[6] = pd.to_numeric(test_df[6], errors='coerce')
test_df[5] = pd.to_numeric(test_df[5], errors='coerce')
test_df[2] = pd.to_numeric(test_df[2], errors='coerce')
test_df[4] = pd.to_numeric(test_df[4], errors='coerce')
test_df[7] = pd.to_numeric(test_df[7], errors='coerce')
test_df[3] = pd.to_numeric(test_df[3], errors='coerce')
test_df[1] = pd.to_numeric(test_df[1], errors='coerce')
# 对日期进行处理
train_df[8] = train_df[6] - train_df[5]
train_df[9] = train_df[2] - train_df[5]
train_df[10] = train_df[4] - train_df[5]
train_df.drop([0, 1, 2, 3, 4, 5, 6, 7], axis=1, inplace=True)
test_df[8] = test_df[6] - test_df[5]
test_df[9] = test_df[2] - test_df[5]
test_df[10] = test_df[4] - test_df[5]
test_df.drop([0, 1, 2, 3, 4, 5, 6, 7], axis=1, inplace=True)
# 对特征进行归一化处理
scaler = MinMaxScaler()
train_df[[8, 9, 10]] = scaler.fit_transform(train_df[[8, 9, 10]])
test_df[[8, 9, 10]] = scaler.transform(test_df[[8, 9, 10]])
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(train_df.iloc[:, :-1], train_df.iloc[:, -1], test_size=0.3, random_state=0)
```
接下来,我们需要对特征进行处理,构建不同的特征,包括用户领取的优惠券数量、用户消费过的优惠券数量、用户与商家间的距离等。以下是代码实现:
```python
# 构建不同的特征
def get_user_receive_count(df):
temp = df.groupby([0]).size().reset_index(name='counts')
return df.merge(temp, on=[0], how='left')
def get_user_consume_count(df):
temp = df[df[5] != 'null'].groupby([0]).size().reset_index(name='counts')
return df.merge(temp, on=[0], how='left')
def get_user_merchant_distance(df):
temp = df.groupby([0, 3]).size().reset_index(name='counts')
temp['counts'] = temp['counts'].apply(lambda x: 1)
temp = temp.groupby([0])['counts'].sum().reset_index(name='distance')
return df.merge(temp, on=[0], how='left')
X_train = get_user_receive_count(X_train)
X_train = get_user_consume_count(X_train)
X_train = get_user_merchant_distance(X_train)
X_test = get_user_receive_count(X_test)
X_test = get_user_consume_count(X_test)
X_test = get_user_merchant_distance(X_test)
test_df = get_user_receive_count(test_df)
test_df = get_user_consume_count(test_df)
test_df = get_user_merchant_distance(test_df)
X_train.drop([0, 5], axis=1, inplace=True)
X_test.drop([0, 5], axis=1, inplace=True)
test_df.drop([0, 5], axis=1, inplace=True)
```
最后,我们需要使用随机森林算法进行训练和预测。以下是代码实现:
```python
# 训练和预测
rf = RandomForestClassifier(n_estimators=100, random_state=0)
rf.fit(X_train, y_train)
y_pred = rf.predict_proba(X_test)[:, 1]
score = roc_auc_score(y_test, y_pred)
print('AUC Score: {:.4f}'.format(score))
y_pred = rf.predict_proba(test_df)[:, 1]
result = pd.DataFrame({'prob': y_pred})
result.to_csv('result.csv', index=False)
```
这样就完成了O2O优惠券使用预测的代码实现,你可以根据自己的实际情况进行调整。
给出完整代码和代码详细注释,针对scikit-learn中的糖尿病数据集,利用Python实现基于统计机器学习的数据回归分析,并对数据以及结果进行分析及可视化;
在Python中,我们可以使用Scikit-learn库来进行数据回归分析,它包含了许多强大的机器学习算法。这里是一个使用糖尿病数据集(Pima Indians Diabetes Dataset)进行线性回归的例子,同时包括了代码、注释和基本的数据分析与可视化:
```python
# 导入所需的库
import pandas as pd
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
# 加载糖尿病数据集
diabetes = datasets.load_diabetes()
# 将数据转换为DataFrame以便于处理
df = pd.DataFrame(data=diabetes.data, columns=diabetes.feature_names)
# 添加目标变量列(血糖水平)
df['target'] = diabetes.target
# 数据预处理:将类别特征转化为数值特征(如果有的话),这里我们假设没有类别特征)
df = df.apply(pd.to_numeric, errors='coerce')
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df.drop('target', axis=1), df['target'], test_size=0.2, random_state=42)
# 创建并训练线性回归模型
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# 预测
y_pred = regressor.predict(X_test)
# 计算评估指标
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R-squared Score:", r2)
# 可视化结果
plt.scatter(y_test, y_pred, color='blue')
plt.plot(y_test, y_test, color='red', linestyle='dashed')
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.title('Linear Regression Prediction vs True Values')
plt.show()
# 结果分析
阅读全文
相关推荐
















