用python 写yolov5与Mask R-CNN的实例,以及详细步骤

时间: 2024-06-08 17:10:04 浏览: 178
ZIP

python学习之:yolov5源码

以下是使用Python编写YOLOv5和Mask R-CNN实例的详细步骤: 1. 安装必要的库 首先,需要安装一些必要的库,包括: - PyTorch - torchvision - numpy - opencv-python - albumentations 可以通过以下命令使用pip安装它们: ``` pip install torch torchvision numpy opencv-python albumentations ``` 2. 下载YOLOv5和Mask R-CNN模型 可以从以下链接下载YOLOv5和Mask R-CNN模型: - YOLOv5:https://github.com/ultralytics/yolov5/releases - Mask R-CNN:https://github.com/matterport/Mask_RCNN/releases 下载后,将它们解压缩到项目文件夹中。 3. 加载模型 接下来,需要加载YOLOv5和Mask R-CNN模型。可以使用以下代码来加载它们: ```python import torch import torchvision # Load YOLOv5 model model_yolo = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) # Load Mask R-CNN model model_maskrcnn = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True) model_maskrcnn.eval() ``` 4. 加载图像 然后,需要加载要检测的图像。可以使用以下代码来加载图像: ```python import cv2 # Load image image = cv2.imread('path/to/image.jpg') ``` 5. 进行YOLOv5检测 接下来,可以使用YOLOv5模型来进行目标检测。可以使用以下代码来执行检测: ```python # Perform YOLOv5 detection results = model_yolo(image) ``` 6. 进行Mask R-CNN检测 接下来,可以使用Mask R-CNN模型来进行实例分割。可以使用以下代码来执行检测: ```python import numpy as np import torch import torchvision.transforms as T from PIL import Image # Define transform transform = T.Compose([ T.ToTensor() ]) # Convert image to tensor image_tensor = transform(Image.fromarray(image)).unsqueeze(0) # Perform Mask R-CNN detection output = model_maskrcnn(image_tensor) masks = output[0]['masks'].detach().cpu().numpy() scores = output[0]['scores'].detach().cpu().numpy() boxes = output[0]['boxes'].detach().cpu().numpy() class_ids = output[0]['labels'].detach().cpu().numpy() ``` 7. 可视化结果 最后,可以将检测结果可视化。可以使用以下代码来绘制检测结果: ```python import random import matplotlib.pyplot as plt import matplotlib.patches as patches # Draw YOLOv5 detection results fig, ax = plt.subplots() ax.imshow(results.render()[..., ::-1]) for r in results.xyxy[0]: rect = patches.Rectangle((r[0], r[1]), r[2]-r[0], r[3]-r[1], linewidth=1, edgecolor='r', facecolor='none') ax.add_patch(rect) # Draw Mask R-CNN detection results colors = [[random.random() for _ in range(3)] for _ in range(len(class_ids))] fig, ax = plt.subplots() ax.imshow(image[..., ::-1]) for i in range(len(class_ids)): mask = masks[i, 0] color = colors[i] ax.contour(mask, colors=color, linewidths=1) rect = patches.Rectangle((boxes[i][0], boxes[i][1]), boxes[i][2]-boxes[i][0], boxes[i][3]-boxes[i][1], linewidth=1, edgecolor=color, facecolor='none') ax.add_patch(rect) plt.show() ``` 这个过程将会绘制YOLOv5和Mask R-CNN的检测结果。
阅读全文

相关推荐

zip
【项目说明】 1.项目代码均经过功能验证ok,确保稳定可靠运行。欢迎下载食用体验! 2.主要针对各个计算机相关专业,包括计算机科学、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师、企业员工。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。在使用过程中,如有问题或建议,请及时沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 【资源介绍】 分别基于C++和python语言用opencv的dnn模块实现yolov5目标检测源码+项目说明.zip yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.py,C++版本的主程序是main_yolo.cpp 运行整套程序只需要安装opencv库(4.0以上版本的),彻底摆脱对深度学习框架的依赖 如果你想运行生成onnx文件的程序,那么就cd到convert-onnx文件夹,在百度云盘下载yolov5s,yolov5l,yolov5m,yolov5x的.pth文件放在该目录里, 百度云盘链接: https://pan.baidu.com/s/1oIdwpp6kuasANMInTpHnrw 密码: m3n1 这4个pth文件是从https://github.com/ultralytics/yolov5 的pth文件里抽取出参数,保存到顺序字典OrderedDict里,最后生成新的pth文件 在convert-onnx文件夹里,我把4种yolov5的网络结构全都定义在.py文件里,这样便于读者直观的了解网络结构以及层与层的连接关系。 下载完成pth文件后,运行convert_onnx.py就可以生成.onnx文件,这个程序需要依赖pytorch1.7.0框架,如果pytorch版本低了,程序运行会报错。 因为在yolov5里有新的激活函数,旧版本pytorch可能不支持的

最新推荐

recommend-type

5行Python代码实现图像分割的步骤详解

本文主要探讨如何使用5行Python代码来实现这一过程,特别地,我们将利用PixelLib模块来简化语义分割和实例分割的实现。 首先,我们需要确保环境已部署好。在开始任何图像处理项目之前,确保已经安装了必要的库,如...
recommend-type

使用Python做垃圾分类的原理及实例代码附

本篇文章将探讨如何使用Python来实现垃圾分类的逻辑,并通过实例代码进行详解。 首先,垃圾分类的核心是识别不同种类的垃圾。在Python中,这通常涉及到图像识别和自然语言处理技术。图像识别可以帮助识别垃圾的视觉...
recommend-type

jsp物流信息网建设(源代码+论文)(2024vl).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

中小学教师教育教学情况调查表(学生家长用).docx

中小学教师教育教学情况调查表(学生家长用)
recommend-type

航空车辆检测8-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar

航空车辆检测8-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rarTepegozz-V2 2024-04-21 12:16 pm ============================= *与您的团队在计算机视觉项目上合作 *收集和组织图像 *了解和搜索非结构化图像数据 *注释,创建数据集 *导出,训练和部署计算机视觉模型 *使用主动学习随着时间的推移改善数据集 对于最先进的计算机视觉培训笔记本,您可以与此数据集一起使用 该数据集包含4794张图像。 Tepegozz以可可格式注释。 将以下预处理应用于每个图像: *像素数据的自动取向(带有Exif-Arientation剥离) *调整大小为640x640(拉伸) 应用以下扩展来创建每个源图像的3个版本: *水平翻转的50%概率 *垂直翻转的50%概率 *随机裁剪图像的0%至20% * -15和+15度之间的随机旋转 * 0到1.7像素之间的随机高斯模糊 *将盐和胡椒噪声应用于0.1%的像素 以下转换应用于每个图像的边界框: *以下90度旋转之一的同等概
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"