import nest_asyncio nest_asyncio.apply() import collections import numpy as np import tensorflow as tf import tensorflow_federated as tff np.random.seed(0) tff.federated_computation(lambda: 'Hello, World!')() emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data(cache_dir = '/home/cqx/PycharmProjects/cache/fed_emnist_digitsonly') example_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[0]) example_element = next(iter(example_dataset)) example_element['label'].numpy()当把数据集换成本地fashion_mnist时,代码该如何修改
时间: 2023-06-08 20:07:41 浏览: 355
如果要将数据集从emnist_train更改为fashion_mnist,则需要对代码进行以下更改:
1. 导入fashion_mnist数据集
```
from tensorflow.keras.datasets import fashion_mnist
```
2. 加载fashion_mnist数据集
```
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
```
3. 将数据集转换为TFF格式
```
def preprocess_fn(images, labels):
images = tf.expand_dims(images, axis=-1)
images = tf.cast(images, tf.float32) / 255.0
labels = tf.one_hot(labels, 10)
return collections.OrderedDict(x=images, y=labels)
def make_federated_data(client_data, client_ids):
return [client_data.create_tf_dataset_for_client(client_id)
.map(preprocess_fn)
.shuffle(500)
.repeat(NUM_EPOCHS)
.batch(BATCH_SIZE)
.prefetch(PREFETCH_BUFFER)
for client_id in client_ids]
train_data = make_federated_data(fashion_mnist, client_ids)
```
在替换原始数据集之后,这些更改将确保新数据集与代码一起工作。
阅读全文