matlab共轭梯度法PRP
时间: 2025-01-02 12:41:18 浏览: 15
### MATLAB 中实现共轭梯度法 PRP 的示例代码
#### 示例代码解释
下面展示了如何在MATLAB中实现Polak-Ribière-Polyak (PRP) 共轭梯度算法。此方法是一种非线性共轭梯度法,广泛用于求解无约束最优化问题。
```matlab
function [x, fval] = prp_cg(f, grad_f, x0, max_iter, tol)
% 输入参数说明:
% f: 目标函数句柄
% grad_f: 目标函数的梯度句柄
% x0: 初始猜测点
% max_iter: 最大迭代次数
% tol: 收敛公差
% 初始化变量
n = length(x0);
x = x0;
g = grad_f(x); % 计算初始梯度
d = -g; % 设置初始搜索方向为负梯度方向
k = 0;
while norm(g) > tol && k < max_iter
% 使用 Wolfe 条件进行一维搜索来找到步长 alpha
alpha = line_search_wolfe(f, grad_f, x, d);
% 更新位置和梯度
x_new = x + alpha * d;
g_new = grad_f(x_new);
% Polak-Ribière-Polyak 参数 beta_k+1 的计算
beta_prp = dot(g_new - g, g_new) / dot(g, g);
% 如果beta小于零,则设置d=-g;否则按照公式更新d
if isnan(beta_prp) || isinf(beta_prp) || beta_prp < 0
d = -g_new;
else
d = -g_new + beta_prp * d;
end
% 准备下一轮循环
x = x_new;
g = g_new;
k = k + 1;
end
fval = f(x);
end
function alpha = line_search_wolfe(f, grad_f, x, p)
c1 = 1e-4;
c2 = 0.9;
alpha_max = 1;
phi_0 = f(x);
der_phi_0 = dot(grad_f(x), p);
alpha = min(1.0, abs(der_phi_0));
phi_alpha = @(a) f(x + a*p);
der_phi_alpha = @(a) dot(grad_f(x+a*p), p);
while phi_alpha(alpha) > phi_0 + c1*alpha*der_phi_0 ...
|| der_phi_alpha(alpha) < c2*der_phi_0
alpha = alpha/2;
if alpha <= eps
error('Line search failed');
end
end
end
```
这段代码实现了完整的PRP共轭梯度算法,并包含了Wolfe条件下的直线搜索子程序[^2]。该算法接受目标函数`f`及其梯度`grad_f`作为输入,并返回最优解`x`以及对应的最小化后的函数值`fval`。
阅读全文