def __init__(self, input_size, hidden_dim, num_layers, n_class=1, mode='LSTM'):
时间: 2024-05-21 16:18:20 浏览: 81
这是一个初始化函数,用于创建一个多层循环神经网络(RNN)模型。参数说明如下:
- input_size:输入的特征向量的大小。
- hidden_dim:RNN中每个隐藏层的大小。
- num_layers:RNN中的隐藏层数。
- n_class:输出的类别数,默认为1。
- mode:RNN的类型,默认为LSTM。
在函数体内,会根据不同的RNN类型(LSTM、GRU等)创建相应的RNN层,并在最后接上一个全连接层,输出预测结果。
相关问题
class my_LSTM(torch.nn.Module): def __init__(self, lstm_inputsize, lstm_hiddensize, lstm_layers, lstm_dropout): super(my_LSTM, self).__init__() self.lstm_inputsize = lstm_inputsize self.lstm_hiddensize = lstm_hiddensize self.lstm_layers = lstm_layers self.lstm_dropout = lstm_dropout self.setup_layers() def setup_layers(self): self.lstm = torch.nn.LSTM( input_size = self.lstm_inputsize, hidden_size = self.lstm_hiddensize, num_layers = self.lstm_layers, batch_first=True, dropout=(0 if self.lstm_layers == 1 else self.lstm_dropout), bidirectional=False ) def forward(self, input): out, (h_n, c_n) = self.lstm(input) return out[:, -1, :]
这是一个使用LSTM的神经网络模型。该模型的输入大小为lstm_inputsize,隐藏状态大小为lstm_hiddensize,LSTM的层数为lstm_layers。该模型还使用了dropout来减少过拟合。在setup_layers函数中,该模型设置了一个LSTM层。在forward函数中,它将输入input传递给LSTM层,然后将最后一个时间步的输出返回作为最终输出。这个模型没有使用双向LSTM,因此它是一个单向LSTM模型。
def setup_layers(self): self.lstm = torch.nn.LSTM( input_size = self.lstm_inputsize, hidden_size = self.lstm_hiddensize, num_layers = self.lstm_layers, batch_first=True, dropout=(0 if self.lstm_layers == 1 else self.lstm_dropout), bidirectional=False )
这段代码使用PyTorch中的`nn.LSTM`构建了一个LSTM层,具体参数如下:
- `input_size`:输入特征的维度。
- `hidden_size`:隐藏状态的维度。
- `num_layers`:LSTM层数。
- `batch_first`:如果为True,则输入和输出张量的形状为(batch_size, seq_length, feature_dims);否则,形状为(seq_length, batch_size, feature_dims)。
- `dropout`:如果`num_layers=1`,则不使用dropout;否则,将应用dropout并指定丢弃概率。
- `bidirectional`:是否使用双向LSTM。
需要注意的是,这段代码构建的是单向LSTM,如果需要构建双向LSTM,需要将`bidirectional`参数设置为True,如下所示:
```python
self.lstm = torch.nn.LSTM(
input_size=self.lstm_inputsize,
hidden_size=self.lstm_hiddensize,
num_layers=self.lstm_layers,
batch_first=True,
dropout=(0 if self.lstm_layers == 1 else self.lstm_dropout),
bidirectional=True
)
```
阅读全文