LSTMMain_model = LSTMMain(input_size=features_num, output_len=output_length, lstm_hidden=dim, lstm_layers=num_blocks, batch_size=batch_size, device=device)根据这个写bp神经网络的代码
时间: 2024-03-20 16:39:08 浏览: 141
好的,以下是一个简单的 BP 神经网络的示例代码,你可以参考一下:
```python
import torch
import torch.nn as nn
class BPNet(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(BPNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
# 设置超参数
input_size = 10
hidden_size = 20
output_size = 1
learning_rate = 0.01
epochs = 100
# 创建模型、损失函数和优化器
model = BPNet(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# 生成随机训练数据
x = torch.randn(100, input_size)
y = torch.randn(100, output_size)
# 训练模型
for epoch in range(epochs):
optimizer.zero_grad()
outputs = model(x)
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))
```
在这个示例中,我们定义了一个名为 `BPNet` 的类,它有一个包含两个全连接层的神经网络。然后,我们定义了超参数,包括输入特征的数量、隐藏层的大小、输出特征的数量、学习率和训练轮数。接着,我们生成了随机的训练数据,并使用 MSE(均方误差)作为损失函数,使用 SGD(随机梯度下降)作为优化器来训练模型。最后,我们输出了每个 epoch 的损失值,以便我们可以跟踪模型的训练进程。
阅读全文