pytorch怎么搭建gan网络
时间: 2023-12-05 10:04:11 浏览: 95
如何搭建pytorch环境
搭建 GAN 网络需要分别定义 Generator 和 Discriminator 两个网络,使用 PyTorch 可以按照以下步骤进行:
1.导入必要的包:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import make_grid
import matplotlib.pyplot as plt
```
2.定义 Generator 网络:
```python
class Generator(nn.Module):
def __init__(self, latent_dim=100, img_shape=(1, 28, 28)):
super(Generator, self).__init__()
self.img_shape = img_shape
self.model = nn.Sequential(
nn.Linear(latent_dim, 128),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(128, 256),
nn.BatchNorm1d(256, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 512),
nn.BatchNorm1d(512, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 1024),
nn.BatchNorm1d(1024, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1024, int(torch.prod(torch.tensor(img_shape)))),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *self.img_shape)
return img
```
3.定义 Discriminator 网络:
```python
class Discriminator(nn.Module):
def __init__(self, img_shape=(1, 28, 28)):
super(Discriminator, self).__init__()
self.img_shape = img_shape
self.model = nn.Sequential(
nn.Linear(int(torch.prod(torch.tensor(img_shape))), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
```
4.定义训练过程:
```python
# 定义超参数
lr = 0.0002
b1 = 0.5
b2 = 0.999
n_epochs = 200
batch_size = 64
latent_dim = 100
img_shape = (1, 28, 28)
# 定义数据集
dataset = MNIST(root='data/', train=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义网络和优化器
generator = Generator(latent_dim=latent_dim, img_shape=img_shape)
discriminator = Discriminator(img_shape=img_shape)
adversarial_loss = nn.BCELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=lr, betas=(b1, b2))
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2))
# 训练过程
for epoch in range(n_epochs):
for i, (imgs, _) in enumerate(dataloader):
# 定义输入数据和真实标签
batch_size = imgs.shape[0]
real_imgs = imgs.cuda()
valid = torch.ones((batch_size, 1)).cuda()
fake = torch.zeros((batch_size, 1)).cuda()
# -----------------
# 训练生成器
# -----------------
optimizer_G.zero_grad()
# 生成随机噪声并生成图像
z = torch.randn((batch_size, latent_dim)).cuda()
gen_imgs = generator(z)
# 计算生成图像的损失并进行反向传播
g_loss = adversarial_loss(discriminator(gen_imgs), valid)
g_loss.backward()
optimizer_G.step()
# ---------------------
# 训练判别器
# ---------------------
optimizer_D.zero_grad()
# 计算真实图像的损失并进行反向传播
real_loss = adversarial_loss(discriminator(real_imgs), valid)
# 计算生成图像的损失并进行反向传播
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
# 计算总损失并进行反向传播
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# 打印损失和生成图像
print(
"[Epoch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch + 1, n_epochs, d_loss.item(), g_loss.item())
)
if epoch % 10 == 0:
with torch.no_grad():
z = torch.randn((batch_size, latent_dim)).cuda()
gen_imgs = generator(z)
img_grid = make_grid(gen_imgs[:25], nrow=5, normalize=True)
plt.imshow(img_grid.permute(1, 2, 0).cpu().numpy())
plt.show()
```
以上就是 PyTorch 搭建 GAN 网络的基本步骤,如有需要可以根据具体情况进行修改。
阅读全文