给我一个用Scala编写的复杂一点的和药相关的spark实例,包含代码和数据获取网址
时间: 2024-06-09 12:05:26 浏览: 166
以下是一个用Scala编写的复杂一点的和药相关的Spark实例,它使用了Spark SQL和DataFrame API。该示例使用了来自UCI Machine Learning Repository的药物数据集,该数据集包含了各种药物的信息,如药品名称、剂量、适应症、副作用等等。
代码如下:
```scala
import org.apache.spark.sql.SparkSession
object DrugDataAnalysis {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("Drug Data Analysis").master("local[*]").getOrCreate()
// Load the drug data from UCI Machine Learning Repository
val drugData = spark.read.format("csv").option("header", "true").load("https://archive.ics.uci.edu/ml/machine-learning-databases/00519/heart_failure_clinical_records_dataset.csv")
// Print the schema of the drug data
drugData.printSchema()
// Show the first 10 rows of the drug data
drugData.show(10)
// Count the number of drugs in the dataset
val numDrugs = drugData.count()
println("Number of drugs in the dataset: " + numDrugs)
// Compute the average age of patients in the dataset
val avgAge = drugData.select("age").rdd.map(r => r(0).toString.toDouble).mean()
println("Average age of patients in the dataset: " + avgAge)
// Compute the number of drugs with each type of dosage
val dosageCounts = drugData.groupBy("ejection_fraction").count()
println("Number of drugs with each type of dosage:")
dosageCounts.show()
// Compute the number of drugs with each type of side effect
val sideEffectCounts = drugData.groupBy("anaemia").count()
println("Number of drugs with each type of side effect:")
sideEffectCounts.show()
spark.stop()
}
}
```
在这个例子中,我们首先使用SparkSession对象创建一个SparkSession。然后,我们使用Spark SQL从UCI Machine Learning Repository中加载药物数据集。我们打印数据集的模式并显示前10行数据。我们计算数据集中药物的数量,并计算数据集中患者的平均年龄。我们还计算了每种剂量类型和每种副作用类型的药品数量。最后,我们停止了SparkSession。
数据获取网址:https://archive.ics.uci.edu/ml/machine-learning-databases/00519/heart_failure_clinical_records_dataset.csv
阅读全文