遗传算法求函数最小值matlab语言
时间: 2023-09-18 12:11:15 浏览: 91
以下是一个简单的 MATLAB 实现遗传算法求解函数最小值的例子:
```matlab
% 设置遗传算法参数
popSize = 50; % 种群大小
numVars = 2; % 变量个数
numGenerations = 100; % 迭代次数
eliteCount = 2; % 精英数目
mutationRate = 0.01; % 变异率
% 初始化种群
population = rand(popSize, numVars);
% 开始迭代
for generation = 1:numGenerations
% 计算适应度
fitness = zeros(popSize, 1);
for i = 1:popSize
fitness(i) = myFitnessFunction(population(i, :));
end
% 选择精英
[~, eliteIndices] = sort(fitness);
elitePopulation = population(eliteIndices(1:eliteCount), :);
% 选择交配伙伴
parentIndices = randsample(popSize, popSize - eliteCount, true, fitness);
parentPopulation = population(parentIndices, :);
% 交叉
crossoverPopulation = zeros(size(parentPopulation));
for i = 1:2:popSize - eliteCount
parent1 = parentPopulation(i, :);
parent2 = parentPopulation(i + 1, :);
crossoverPopulation(i:i+1, :) = myCrossoverFunction(parent1, parent2);
end
% 变异
mutationPopulation = myMutationFunction(crossoverPopulation, mutationRate);
% 合并种群
population = [elitePopulation; mutationPopulation];
end
% 计算最终适应度并找到最优解
fitness = zeros(popSize, 1);
for i = 1:popSize
fitness(i) = myFitnessFunction(population(i, :));
end
[~, index] = min(fitness);
bestSolution = population(index, :);
bestFitness = fitness(index);
disp(['最优解: ', num2str(bestSolution)]);
disp(['最优适应度: ', num2str(bestFitness)]);
% 自定义适应度函数
function fitness = myFitnessFunction(x)
fitness = sin(x(1)) * cos(x(2)) - x(1) / (x(2) ^ 2 + 1);
end
% 自定义交叉函数
function offspring = myCrossoverFunction(parent1, parent2)
crossoverPoint = randi(numel(parent1));
offspring = [parent1(1:crossoverPoint), parent2(crossoverPoint+1:end)];
end
% 自定义变异函数
function offspring = myMutationFunction(parents, mutationRate)
offspring = parents;
numGenesToMutate = round(numel(parents) * mutationRate);
for i = 1:numGenesToMutate
index = randi(numel(parents));
offspring(index) = rand();
end
end
```
在这个例子中,我们使用遗传算法来求解一个二元函数的最小值。具体来说,我们将种群初始化为随机的二元向量,并且在每次迭代中计算每个个体的适应度,并根据适应度选择精英、交配伙伴、进行交叉和变异操作。最终,我们找到最优解和最优适应度。
需要注意的是,这只是遗传算法的一个简单实现,实际应用中需要根据问题的特点进行调整。
阅读全文