yolov5 backbone 的cbl定义
时间: 2023-09-21 12:11:35 浏览: 109
第P9周:YOLOv5-Backbone模块实现
在 YOLOv5 中,CBL 是指 Convolutional Block with a Linear Bottleneck。CBL 由两个卷积层和一个线性层组成,其中第一个卷积层的卷积核大小为1x1,第二个卷积层的卷积核大小为3x3,线性层通常是一层批归一化和激活函数。
在 YOLOv5 的网络结构中,CBL 通常用于替换传统的卷积层,以减小模型的计算复杂度。CBL 通常被用作骨干网络的一部分,以提取图像特征。以下是CBL的定义:
```python
class CBL(nn.Module):
#CBL模块
def __init__(self, ch_in, ch_out, k=1, s=1, p=None, g=1, act=True):
super().__init__()
self.conv = nn.Conv2d(ch_in, ch_out, kernel_size=k, stride=s, padding=autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(ch_out)
self.act = nn.LeakyReLU(0.1, inplace=True) if act else nn.Identity()
def forward(self, x):
return self.act(self.bn(self.conv(x)))
```
阅读全文