当然,以下是一些离散数学命题逻辑的习题供你参考: 给定命题 p: "I am happy" 和 q: "It is raining",写出以下复合命题的真值表达式: a) p ∧ q b) p ∨ q c) ¬p d) p → q 对于命题 p: "The car is red" 和 q: "The car is expensive",使用符号化表示以下陈述: a) The car is not red and it is expensive. b) The car is either red or expensive. c) If the car is red, then it is expensive. 使用推理规则证明以下推理: Premise: p → q Premise: ¬q Conclusion: ¬p 给定命题 p: "It is sunny",q: "I go swimming",r: "I go hiking",使用符号化表示以下陈述: a) If it is sunny, then I go swimming and go hiking. b) I go swimming or I go hiking, but not both. 请告诉我答案
时间: 2024-04-17 07:28:31 浏览: 115
当然,以下是这些习题的答案:
给定命题 p: "I am happy" 和 q: "It is raining",以下是复合命题的真值表达式:
a) p ∧ q (I am happy and it is raining)
真值表达式:p ∧ q
b) p ∨ q (I am happy or it is raining)
真值表达式:p ∨ q
c) ¬p (I am not happy)
真值表达式:¬p
d) p → q (If I am happy, then it is raining)
真值表达式:¬p ∨ q
对于命题 p: "The car is red" 和 q: "The car is expensive",以下是符号化的陈述:
a) The car is not red and it is expensive.
符号化表示:¬p ∧ q
b) The car is either red or expensive.
符号化表示:p ∨ q
c) If the car is red, then it is expensive.
符号化表示:p → q
使用推理规则证明以下推理:
Premise: p → q
Premise: ¬q
Conclusion: ¬p
推理过程:
1. 假设 p 为真,根据第一个前提 p → q,得出 q 为真。
2. 根据第二个前提 ¬q,得出 q 为假。
3. 由于 q 不能同时为真和假,因此假设 p 为真是不成立,所以 ¬p 为真。
因此,根据推理规则,Premise: p → q,Premise: ¬q 可以推出 Conclusion: ¬p。
给定命题 p: "It is sunny",q: "I go swimming",r: "I go hiking",以下是符号化的陈述:
a) If it is sunny, then I go swimming and go hiking.
符号化表示:p → (q ∧ r)
b) I go swimming or I go hiking, but not both.
符号化表示:(q ∨ r) ∧ ¬(q ∧ r)
这些是习题的答案。如果有任何疑问,请随时提问。
阅读全文