jupter notebook中已知def IQR_Outliers(Ser): """ Ser:进行异常值分析的DataFrame的某一列 """ Low = Ser.quantile(0.25) - 1.5 * (Ser.quantile(0.75) - Ser.quantile(0.25)) Up = Ser.quantile(0.75) + 1.5 * (Ser.quantile(0.75) - Ser.quantile(0.25)) index = (Ser < Low) | (Ser > Up) Outliers = Ser.loc[index] return Outliers,如何删除shiyan2中所有异常值
时间: 2024-03-01 12:50:04 浏览: 107
假设你要删除shiyan2数据集中所有异常值,可以按照以下步骤进行:
1. 导入数据集
```python
import pandas as pd
df = pd.read_csv('shiyan2.csv')
```
2. 找出所有异常值
```python
outliers = IQR_Outliers(df['列名'])
```
其中,将 `列名` 替换为你要进行异常值分析的列名。`outliers` 是一个包含所有异常值的 Pandas Series 对象。
3. 删除所有异常值
```python
df = df[~df['列名'].isin(outliers)]
```
这里使用了 `isin()` 函数,将 `~` 取反操作符用于选择不在 `outliers` 中的行。最后,重新赋值给 `df` 变量,就可以得到删除所有异常值后的数据集。
相关问题
def outliers_proc(data, col_name, scale = 3): # data:原数据 # col_name:要处理异常值的列名称 # scale:用来控制删除尺度的 def box_plot_outliers(data_ser, box_scale): iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25)) # quantile是取出数据对应分位数的数值 val_low = data_ser.quantile(0.25) - iqr # 下界 val_up = data_ser.quantile(0.75) + iqr # 上界 rule_low = (data_ser < val_low) # 筛选出小于下界的索引 rule_up = (data_ser > val_up) # 筛选出大于上界的索引 return (rule_low, rule_up),(val_low, val_up) data_n = data.copy() data_series = data_n[col_name] # 取出对应数据 rule, values = box_plot_outliers(data_series, box_scale = scale) index = np.arange(data_series.shape[0])[rule[0] | rule[1]] # 先产生0到n-1,然后再用索引把其中处于异常值的索引取出来 print("Delete number is {}".format(len(index))) data_n = data_n.drop(index) # 整行数据都丢弃 data_n.reset_index(drop = True, inplace = True) # 重新设置索引 print("Now column number is:{}".format(data_n.shape[0])) index_low = np.arange(data_series.shape[0])[rule[0]] outliers = data_series.iloc[index_low] # 小于下界的值 print("Description of data less than the lower bound is:") print(pd.Series(outliers).describe()) index_up = np.arange(data_series.shape[0])[rule[1]] outliers = data_series.iloc[index_up] print("Description of data larger than the lower bound is:") print(pd.Series(outliers).describe()) fig, axes = plt.subplots(1,2,figsize = (10,7)) ax1 = sns.boxplot(y = data[col_name], data = data, palette = "Set1", ax = axes[0]) ax1.set_title("处理异常值前") ax2 = sns.boxplot(y = data_n[col_name], data = data_n, palette = "Set1", ax = axes[1]) ax2.set_title("处理异常值后") return data_n代码每一行解析
这是一个用于处理异常值的函数,其输入为原始数据、要处理异常值的列名称和处理异常值的尺度。函数内部定义了一个嵌套函数 box_plot_outliers,用于通过箱型图的方法找出异常值的索引,并返回删除异常值后的数据、删除的样本数、小于下界的值的描述统计和大于上界的值的描述统计。主函数中先将原始数据复制到一个新的变量 data_n 中,然后取出要处理的列数据 data_series,调用 box_plot_outliers 函数找到要删除的异常值的索引,再根据索引从 data_n 中删除异常值,并重新设置索引。最后,将处理前后的箱型图绘制出来,返回处理后的数据。
将下面python代码转为MATLAB格式import pandas as pd import numpy as np # 假设数据存储在名为 data.csv 的文件中 data = pd.read_excel("合并数据.xlsx") # 删除质量等级列,因为它是分类变量,不适用于线性插值 data = data.drop(columns=["质量等级"]) # 检查缺失值的情况 print("缺失值统计:") print(data.isnull().sum()) # 使用线性插值填充缺失值 data.interpolate(method='linear', inplace=True) # 再次检查缺失值的情况 print("\n填充缺失值后的统计:") print(data.isnull().sum()) # 对数据进行异常值检测和处理 def detect_outliers(data, columns, threshold=1.5): for column in columns: q1 = data[column].quantile(0.25) q3 = data[column].quantile(0.75) iqr = q3 - q1 lower_bound = q1 - threshold * iqr upper_bound = q3 + threshold * iqr outliers = data[(data[column] < lower_bound) | (data[column] > upper_bound)] print(f"{column} 异常值数量:{len(outliers)}") # 将异常值替换为缺失值 data[column] = data[column].apply(lambda x: np.nan if (x < lower_bound) or (x > upper_bound) else x) # 检测并处理异常值 numeric_columns = ['AQI', 'PM10', 'O3', 'SO2', 'PM2.5', 'NO2', 'CO', 'V13305', 'V10004_700', 'V11291_700', 'V12001_700', 'V13003_700'] detect_outliers(data, numeric_columns) # 使用线性插值填充处理后的异常值(现已变为缺失值) data.interpolate(method='linear', inplace=True) # 将预处理后的数据保存到新的 CSV 文件 data.to_csv("preprocessed_data.csv", index=False)
import matlab.io.*;
% 假设数据存储在名为 data.xlsx 的文件中
data = readtable('合并数据.xlsx');
% 删除质量等级列,因为它是分类变量,不适用于线性插值
data = removevars(data, {'质量等级'});
% 检查缺失值的情况
disp('缺失值统计:');
disp(sum(ismissing(data)));
% 使用线性插值填充缺失值
data{:,:} = fillmissing(data{:,:}, 'linear');
% 再次检查缺失值的情况
disp('填充缺失值后的统计:');
disp(sum(ismissing(data)));
% 对数据进行异常值检测和处理
function detect_outliers(data, columns, threshold)
for i = 1:length(columns)
column = columns{i};
q1 = quantile(data{:,column}, 0.25);
q3 = quantile(data{:,column}, 0.75);
iqr = q3 - q1;
lower_bound = q1 - threshold * iqr;
upper_bound = q3 + threshold * iqr;
outliers = data((data{:,column} < lower_bound) | (data{:,column} > upper_bound), :);
fprintf('%s 异常值数量:%d\n', column, height(outliers));
% 将异常值替换为缺失值
data{:,column} = arrayfun(@(x) NaN if (x < lower_bound) || (x > upper_bound) else x, data{:,column});
end
end
% 检测并处理异常值
numeric_columns = {'AQI', 'PM10', 'O3', 'SO2', 'PM2.5', 'NO2', 'CO', 'V13305', 'V10004_700', 'V11291_700', 'V12001_700', 'V13003_700'};
detect_outliers(data, numeric_columns, 1.5);
% 使用线性插值填充处理后的异常值(现已变为缺失值)
data{:,:} = fillmissing(data{:,:}, 'linear');
% 将预处理后的数据保存到新的 CSV 文件
writetable(data, 'preprocessed_data.csv', 'WriteRowNames', true);
阅读全文