def read(data_path): data=['label'+'\t'+'text_a\n'] with open(data_path, 'r', encoding='utf-8-sig') as f: lines=f.readlines() # 三行为一条记录 for i in range(int(len(lines)/3)): # 读取第一行为内容 word = lines[i3].strip('\n') # 读取第三行为标签 label = lines[i3+2].strip('\n') data.append(label+'\t'+word+'\n') i=i+1 return data with open('formated_train.txt','w') as f: f.writelines(read('train.txt')) with open('formated_test.txt','w') as f: f.writelines(read('test.txt'))和from paddlenlp.datasets import load_dataset def read(data_path): with open(data_path, 'r', encoding='utf-8') as f: # 跳过列名 next(f) for line in f: label, word= line.strip('\n').split('\t') yield {'text': word, 'label': label} # data_path为read()方法的参数 train_ds = load_dataset(read, data_path='formated_train.txt',lazy=False) test_ds = load_dataset(read, data_path='formated_test.txt',lazy=False) dev_ds = load_dataset(read, data_path='formated_test.txt',lazy=False)分别干了什么,分别将这两段代码归纳为数据预处理的两个小标题
时间: 2023-08-23 17:03:45 浏览: 79
第一个代码段的作用是将数据集文件进行格式化处理,将每一条记录的文本内容和标签分别读取出来,并且以指定格式写入到两个新文件(formated_train.txt和formated_test.txt)中。其中read()方法的作用是读取数据集文件并返回处理后的数据列表。这段代码的两个小标题可以是:数据格式化处理和文件写入操作。
第二个代码段的作用是使用PaddleNLP的load_dataset()方法加载已格式化的数据集文件,生成对应的训练集(train_ds)、测试集(test_ds)和开发集(dev_ds)。其中read()方法的作用是将每一条记录的文本内容和标签读取出来,并以字典形式返回。这段代码的两个小标题可以是:数据集加载和数据格式转换。
相关问题
def read(data_path): data=['label'+'\t'+'text_a\n'] with open(data_path, 'r', encoding='utf-8-sig') as f: lines=f.readlines() # 三行为一条记录 for i in range(int(len(lines)/3)): # 读取第一行为内容 word = lines[i*3].strip('\n') # 读取第三行为标签 label = lines[i*3+2].strip('\n') data.append(label+'\t'+word+'\n') i=i+1 return data with open('formated_train.txt','w') as f: f.writelines(read('train.txt')) with open('formated_test.txt','w') as f: f.writelines(read('test.txt'))和from paddlenlp.datasets import load_dataset def read(data_path): with open(data_path, 'r', encoding='utf-8') as f: # 跳过列名 next(f) for line in f: label, word= line.strip('\n').split('\t') yield {'text': word, 'label': label} # data_path为read()方法的参数 train_ds = load_dataset(read, data_path='formated_train.txt',lazy=False) test_ds = load_dataset(read, data_path='formated_test.txt',lazy=False) dev_ds = load_dataset(read, data_path='formated_test.txt',lazy=False)分别干了什么
这段代码定义了两个函数 `read` 和 `load_dataset` 用于处理和加载数据集。
`read` 函数的作用是将原始数据集文件进行处理,转换成带有标签和文本的数据集格式。其中,`data_path` 参数指定了原始数据集文件的路径。函数会将处理后的数据集以字典的形式逐条 yield 出来。
第一段代码中的 `read` 函数是将原始数据集文件按照指定格式处理,并将处理结果写入到新的文件中。具体实现过程是,首先将文件按行读取,每读取三行就将其中的第一行和第三行分别作为文本和标签。然后将文本和标签按照指定格式拼接成一条记录,最后将所有记录写入到新的文件中。
`load_dataset` 函数利用 `read` 函数将处理后的数据集文件加载到内存中,并返回一个数据集对象。其中,`data_path` 参数指定了数据集文件的路径,`lazy` 参数指定是否启用懒加载模式。这里 `lazy` 参数被设置为 `False`,表示不启用懒加载模式,即一次性将整个数据集加载到内存中。
from torch.utils.data import Dataset from torch.utils.data.dataset import T_co import os import cv2 as cv def read_label(path): file = open(path, "r", encoding='utf-8') label = file.readline() file.close() return label class MyDataset(Dataset): def _init__(self, train_path): self.train_path = train_path self.image_path = os.path.join(train_path, 'image') self.label_path = os.path.join(train_path, "label") self.image_path_list = os.listdir(self.image_path) def __getitem__(self, index) -> T_co: image_name = self.image_path_list[index] image_path = os.path.join(self.image_path, image_name) img = cv.imread(image_path) label_name = 'txt'.join(image_name.rsplit(image_name.split('. ')[-1], 1)) label_path = os.path.join(self.label_path, label_name) label = read_label(label_path) return img,label def __len__(self): return Len(self.image_path_list) my_dataset = MyDataset("dataset/train") data_index = 100 img, label = my_dataset[data_index] cv.imshow(label+ str(data_index)+str(Len(my_dataset)) + ')', img) cv.waitKey(0)详解这段代码
这段代码定义了一个自定义的 PyTorch 数据集类 MyDataset,用于加载训练数据集中的图像和标签。其中:
- `_init__` 方法初始化了数据集的路径和图像文件名列表;
- `__getitem__` 方法按照给定的索引 index,读取对应的图像和标签,并返回它们的元组;
- `__len__` 方法返回数据集中图像的数量。
具体来说,这个数据集类假设训练数据集中的图像文件都存储在 "dataset/train/image" 目录下,而对应的标签文件都存储在 "dataset/train/label" 目录下,且标签文件的文件名和对应的图像文件名一致,只是后缀名不同(图像文件的后缀名为图片格式,标签文件的后缀名为 "txt")。标签文件中只包含一个文本行,表示对应图像的标签。
在这个数据集类中,`read_label` 函数用于读取标签文件的内容,`cv.imread` 函数用于读取图像文件的内容,`os.path.join` 函数用于拼接路径,`os.listdir` 函数用于列出目录下的文件名列表。
最后,这段代码创建了一个 MyDataset 类的实例 my_dataset,用于加载 "dataset/train" 目录下的训练数据集。然后它从数据集中取出第 100 个样本,显示它的图像和标签。
阅读全文