请解释: act_log_std = torch.clamp(act_std, min=LOG_SIG_MIN, max=LOG_SIG_MAX)
时间: 2023-10-11 18:09:37 浏览: 142
这行代码的作用是将一个张量 `act_std` 中的每个元素进行修剪,修剪后的结果存储在另一个张量 `act_log_std` 中。修剪的范围是 `[LOG_SIG_MIN, LOG_SIG_MAX]`,即修剪后的结果不会小于 `LOG_SIG_MIN`,也不会大于 `LOG_SIG_MAX`。
这个代码通常用于在训练神经网络中计算策略的标准差(standard deviation)。在某些情况下,策略的标准差可能会变得非常小,因此需要对其进行修剪以防止出现除零错误。同时,由于标准差必须是正数,因此也需要将其修剪到一个正数范围内。
相关问题
请解释:act_log_std = torch.clamp(act_std, min=LOG_SIG_MIN, max=LOG_SIG_MAX)
这行代码的作用是将一个张量 `act_std` 中的每个元素进行修剪,修剪后的结果存储在另一个张量 `act_log_std` 中。修剪的范围是 `[LOG_SIG_MIN, LOG_SIG_MAX]`,即修剪后的结果不会小于 `LOG_SIG_MIN`,也不会大于 `LOG_SIG_MAX`。
这个代码通常用于实现确定性策略。在确定性策略中,策略的输出不是一个概率分布,而是一个确定的动作值。在这种情况下,为了保证输出的数值在一个合理的范围内,需要对输出进行修剪,以避免出现不合理的动作值。
在此代码中,`act_std` 可以看作是动作值的标准差。通过将其修剪到 `[LOG_SIG_MIN, LOG_SIG_MAX]` 范围内,可以保证输出的动作值在一个合理的范围内,同时避免出现不合理的动作值。修剪的结果被存储在 `act_log_std` 中,通常会被用于计算策略的概率分布。
帮我给每一行代码添加注释 class DeepKalmanFilter(nn.Module): def __init__(self, config): super(DeepKalmanFilter, self).__init__() self.emitter = Emitter(config.z_dim, config.emit_hidden_dim, config.obs_dim) self.transition = Transition(config.z_dim, config.trans_hidden_dim) self.posterior = Posterior( config.z_dim, config.post_hidden_dim, config.obs_dim ) self.z_q_0 = nn.Parameter(torch.zeros(config.z_dim)) self.emit_log_sigma = nn.Parameter(config.emit_log_sigma * torch.ones(config.obs_dim)) self.config = config @staticmethod def reparametrization(mu, sig): return mu + torch.randn_like(sig) * sig @staticmethod def kl_div(mu0, sig0, mu1, sig1): return -0.5 * torch.sum(1 - 2 * sig1.log() + 2 * sig0.log() - (mu1 - mu0).pow(2) / sig1.pow(2) - (sig0 / sig1).pow(2)) def loss(self, obs): time_step = obs.size(1) batch_size = obs.size(0) overshoot_len = self.config.overshooting kl = torch.Tensor([0]).to(self.config.device) reconstruction = torch.Tensor([0]).to(self.config.device) emit_sig = self.emit_log_sigma.exp() for s in range(self.config.sampling_num): z_q_t = self.z_q_0.expand((batch_size, self.config.z_dim)) for t in range(time_step): trans_loc, trans_sig = self.transition(z_q_t) post_loc, post_sig = self.posterior(trans_loc, trans_sig, obs[:, t]) z_q_t = self.reparametrization(post_loc, post_sig) emit_loc = self.emitter(z_q_t) reconstruction += ((emit_loc - obs[:, t]).pow(2).sum(dim=0) / 2 / emit_sig + self.emit_log_sigma * batch_size / 2).sum() if t > 0: over_loc, over_sig = self.transition(overshooting[:overshoot_len - 1]) over_loc = torch.cat([trans_loc.unsqueeze(0), over_loc], dim=0) over_sig = torch.cat([trans_sig.unsqueeze(0), over_sig], dim=0) else: over_loc = trans_loc.unsqueeze(0) over_sig = trans_sig.unsqueeze(0) overshooting = self.reparametrization(over_loc, over_sig) kl = kl + self.kl_div(post_loc.expand_as(over_loc), post_sig.expand_as(over_sig), over_loc, over_sig) / min(t + 1, self.config.overshooting) reconstruction = reconstruction / self.config.sampling_num kl = kl / self.config.sampling_num return reconstruction, kl
答:class DeepKalmanFilter(nn.Module): # 定义深度Kalman滤波器类
def __init__(self, config): # 初始化
super(DeepKalmanFilter, self).__init__() # 调用父类构造函数
self.emitter = Emitter(config.z_dim, config.emit_hidden_dim, config.obs_dim) # 实例化发射器
self.transition = Transition(config.z_dim, config.trans_hidden_dim) # 实例化转换器
self.posterior = Posterior(config.z_dim, config.post_hidden_dim, config.obs_dim) # 实例化后验概率
self.z_q_0 = nn.Parameter(torch.zeros(config.z_dim)) # 设置参数z_q_0
self.emit_log_sigma = nn.Parameter(config.emit_log_sigma * torch.ones(config.obs_dim)) # 发射标准差参数
self.config = config # 配置参数 @staticmethod
def reparametrization(mu, sig): # 重置参数
return mu + torch.randn_like(sig) * sig # 根据均值和标准差重置参数 @staticmethod
def kl_div(mu0, sig0, mu1, sig1): # 计算KL散度
return -0.5 * torch.sum(1 - 2 * sig1.log() + 2 * sig0.log() - (mu1 - mu0).pow(2) / sig1.pow(2) - (sig0 / sig1).pow(2)) # 计算KL散度 def loss(self, obs): # 损失函数
time_step = obs.size(1) # 观测序列的时间步数
batch_size = obs.size(0) # 批量大小
overshoot_len = self.config.overshooting # 超调量
kl = torch.Tensor([0]).to(self.config.device) # kl散度
reconstruction = torch.Tensor([0]).to(self.config.device) # 构建重构误差
emit_sig = self.emit_log_sigma.exp() # 发射标准差
for s in range(self.config.sampling_num): # 采样次数
z_q_t = self.z_q_0.expand((batch_size, self.config.z_dim)) # 估计量初始化
for t in range(time_step): # 遍历每一时刻
trans_loc, trans_sig = self.transition(z_q_t) # 更新转换器
post_loc, post_sig = self.posterior(trans_loc, trans_sig, obs[:, t]) # 更新后验概率
z_q_t = self.reparametrization(post_loc, post_sig) # 重新参数化
emit_loc = self.emitter(z_q_t) # 计算发射器
reconstruction += ((emit_loc - obs[:, t]).pow(2).sum(dim=0) / 2 / emit_sig +
self.emit_log_sigma * batch_size / 2).sum() # 计算重构误差
if t > 0: # 如果不是第一步
over_loc, over_sig = self.transition(overshooting[:overshoot_len - 1]) # 计算超调量
over_loc = torch.cat([trans_loc.unsqueeze(0), over_loc], dim=0) # 转换器的位置
over_sig = torch.cat([trans_sig.unsqueeze(0), over_sig], dim=0) # 转换器的协方差
else: # 如果是第一步
over_loc = trans_loc.unsqueeze(0) # 转换器的位
阅读全文