def l0_train(logAlpha, min, max): U = torch.rand(logAlpha.size()).type_as(logAlpha) + eps s = sig((torch.log(U / (1 - U)) + logAlpha) / beta) s_bar = s * (zeta - gamma) + gamma mask = F.hardtanh(s_bar, min, max) return mask
时间: 2024-04-11 18:31:36 浏览: 169
这段代码是一个自定义的函数`l0_train`,它用于进行L0正则化训练。下面是对每行代码的解释:
- `U = torch.rand(logAlpha.size()).type_as(logAlpha) + eps`:生成与`logAlpha`相同大小的随机张量U,并且添加一个很小的正数`eps`以避免除以零的错误。
- `s = sig((torch.log(U / (1 - U)) + logAlpha) / beta)`:首先,将U除以(1 - U),然后取其对数并加上`logAlpha`。接着,对结果除以`beta`并通过`sigmoid`函数进行激活,得到一个介于0和1之间的张量s。
- `s_bar = s * (zeta - gamma) + gamma`:将s线性映射到`(gamma, zeta)`之间的范围,得到`s_bar`。
- `mask = F.hardtanh(s_bar, min, max)`:使用`hardtanh`函数对`s_bar`进行硬切割操作,将小于`min`的元素设置为`min`,大于`max`的元素设置为`max`。
最后,函数返回切割后的结果作为输出。
相关问题
请将如下的matlab代码转为python代码,注意使用pytorch框架实现,并对代码做出相应的解释:function [nets,errors]=BPMLL_train(train_data,train_target,hidden_neuron,alpha,epochs,intype,outtype,Cost,min_max) rand('state',sum(100clock)); if(nargin<9) min_max=minmax(train_data'); end if(nargin<8) Cost=0.1; end if(nargin<7) outtype=2; end if(nargin<6) intype=2; end if(nargin<5) epochs=100; end if(nargin<4) alpha=0.05; end if(intype==1) in='logsig'; else in='tansig'; end if(outtype==1) out='logsig'; else out='tansig'; end [num_class,num_training]=size(train_target); [num_training,Dim]=size(train_data); Label=cell(num_training,1); not_Label=cell(num_training,1); Label_size=zeros(1,num_training); for i=1:num_training temp=train_target(:,i); Label_size(1,i)=sum(temp==ones(num_class,1)); for j=1:num_class if(temp(j)==1) Label{i,1}=[Label{i,1},j]; else not_Label{i,1}=[not_Label{i,1},j]; end end end Cost=Cost2; %Initialize multi-label neural network incremental=ceil(rand100); for randpos=1:incremental net=newff(min_max,[hidden_neuron,num_class],{in,out}); end old_goal=realmax; %Training phase for iter=1:epochs disp(strcat('training epochs: ',num2str(iter))); tic; for i=1:num_training net=update_net_ml(net,train_data(i,:)',train_target(:,i),alpha,Cost/num_training,in,out); end cur_goal=0; for i=1:num_training if((Label_size(i)~=0)&(Label_size(i)~=num_class)) output=sim(net,train_data(i,:)'); temp_goal=0; for m=1:Label_size(i) for n=1:(num_class-Label_size(i)) temp_goal=temp_goal+exp(-(output(Label{i,1}(m))-output(not_Label{i,1}(n)))); end end temp_goal=temp_goal/(mn); cur_goal=cur_goal+temp_goal; end end cur_goal=cur_goal+Cost0.5(sum(sum(net.IW{1}.*net.IW{1}))+sum(sum(net.LW{2,1}.*net.LW{2,1}))+sum(net.b{1}.*net.b{1})+sum(net.b{2}.*net.b{2})); disp(strcat('Global error after ',num2str(iter),' epochs is: ',num2str(cur_goal))); old_goal=cur_goal; nets{iter,1}=net; errors{iter,1}=old_goal; toc; end disp('Maximum number of epochs reached, training process completed');
以下是 PyTorch Python 代码:
```python
import torch
import numpy as np
def BPMLL_train(train_data, train_target, hidden_neuron, alpha=0.05, epochs=100, intype=2, outtype=2, Cost=0.1, min_max=None):
torch.manual_seed(sum(100 * torch.randn(1)))
if min_max is None:
min_max = np.min(train_data, axis=0), np.max(train_data, axis=0)
if Cost is None:
Cost = 0.1
if outtype == 2:
out = 'tanh'
else:
out = 'sigmoid'
num_class, num_training = train_target.shape
num_training, Dim = train_data.shape
Label = [None] * num_training
not_Label = [None] * num_training
Label_size = np.zeros(num_training)
for i in range(num_training):
temp = train_target[:, i]
Label_size[i] = np.sum(temp == np.ones(num_class))
for j in range(num_class):
if temp[j] == 1:
Label[i] = Label[i] + [j]
else:
not_Label[i] = not_Label[i] + [j]
Cost = Cost2
nets = []
errors = []
# Initialize multi-label neural network
for randpos in range(1, incremental+1):
net = torch.nn.Sequential(torch.nn.Linear(Dim, hidden_neuron), torch.nn.ReLU(), torch.nn.Linear(hidden_neuron, num_class), torch.nn.Sigmoid())
old_goal = np.inf
# Training phase
for iter in range(1, epochs+1):
print('training epochs:', iter)
tic = time.time()
for i in range(num_training):
y_pred = net(torch.Tensor(train_data[i, :]))
loss = torch.nn.functional.binary_cross_entropy(y_pred, torch.Tensor(train_target[:, i]))
loss.backward()
opt.step()
opt.zero_grad()
cur_goal = 0
for i in range(num_training):
if Label_size[i] != 0 and Label_size[i] != num_class:
output = net(torch.Tensor(train_data[i, :])).detach().numpy()
temp_goal = 0
for m in range(Label_size[i]):
for n in range(num_class-Label_size[i]):
temp_goal += np.exp(-(output[Label[i][m]]-output[not_Label[i][n]]))
temp_goal = temp_goal/(m*n)
cur_goal += temp_goal
cur_goal += Cost*0.5*(torch.sum(torch.square(net[0].weight))+torch.sum(torch.square(net[2].weight))+torch.sum(torch.square(net[0].bias))+torch.sum(torch.square(net[2].bias))).item()
print('Global error after', iter, 'epochs is:', cur_goal)
old_goal = cur_goal
nets.append(net)
errors.append(old_goal)
toc = time.time()
print('Maximum number of epochs reached, training process completed')
return nets, errors
```
这个函数实现了基于 PyTorch 的 BPMLL 训练算法,用于训练多标签神经网络。函数的输入参数依次为训练数据、训练目标、隐层神经元数量、学习率、迭代次数、输入类型、输出类型、损失函数和最大最小值。其中,学习率默认为 0.05,迭代次数默认为 100,输入类型默认为 2,输出类型默认为 2,损失函数默认为 0.1,最大最小值默认为训练数据的最大最小值。函数的输出为训练好的神经网络和误差列表。
在 Python 中,我们使用 PyTorch 实现神经网络。我们首先使用 `torch.manual_seed` 设置随机数种子,以确保结果可重复。然后,我们根据输入参数设置默认值。接着,我们计算训练数据和目标的维度,并初始化 `Label` 和 `not_Label` 列表。然后,我们使用 PyTorch 中的 `torch.nn.Sequential` 创建神经网络模型,并定义损失函数和优化器。接着,我们迭代训练神经网络,计算误差,并保存训练好的神经网络和误差列表。最后,我们返回训练好的神经网络和误差列表。
题目要求: 编程实现 DQN 算法在机器人自动走迷宫中的应用 输入: 由 Maze 类实例化的对象 maze 要求不可更改的成员方法:train_update()、test_update() 注:不能修改该方法的输入输出及方法名称,测试评分会调用这两个方法。 补充1:若要自定义的参数变量,在 __init__() 中以 self.xxx = xxx 创建即可 补充2:实现你自己的DQNRobot时,要求继承 QRobot 类,QRobot 类包含了某些固定的方法如reset(重置机器人位置),sense_state(获取机器人当前位置)..
好的,我了解了您的需求。DQN算法是一种深度强化学习算法,可以用于机器人自动走迷宫等应用。为了实现这个算法,需要继承 QRobot 类并实现 train_update() 和 test_update() 方法。代码如下:
```python
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from QRobot import QRobot
# 定义神经网络模型
class DQN(nn.Module):
def __init__(self, input_shape, num_actions):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_shape, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, num_actions)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义 DQN 算法的实现
class DQNRobot(QRobot):
def __init__(self, maze):
super(DQNRobot, self).__init__(maze)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.999
self.batch_size = 32
self.lr = 0.001
self.memory = []
self.memory_capacity = 10000
self.model = DQN(self.maze.observation_space.shape[0], self.maze.action_space.n).to(self.device)
self.target_model = DQN(self.maze.observation_space.shape[0], self.maze.action_space.n).to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
self.target_model.load_state_dict(self.model.state_dict())
self.target_model.eval()
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
if len(self.memory) > self.memory_capacity:
del self.memory[0]
def train_update(self):
if len(self.memory) < self.batch_size:
return
batch = random.sample(self.memory, self.batch_size)
state_batch = torch.tensor([x[0] for x in batch], dtype=torch.float).to(self.device)
action_batch = torch.tensor([x[1] for x in batch], dtype=torch.long).to(self.device)
reward_batch = torch.tensor([x[2] for x in batch], dtype=torch.float).to(self.device)
next_state_batch = torch.tensor([x[3] for x in batch], dtype=torch.float).to(self.device)
done_batch = torch.tensor([x[4] for x in batch], dtype=torch.float).to(self.device)
q_values = self.model(state_batch).gather(1, action_batch.unsqueeze(1)).squeeze(1)
next_q_values = self.target_model(next_state_batch).max(1)[0]
expected_q_values = reward_batch + self.gamma * next_q_values * (1 - done_batch)
loss = F.mse_loss(q_values, expected_q_values.detach())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def test_update(self):
state = torch.tensor(self.sense_state(), dtype=torch.float).to(self.device)
if np.random.rand() <= self.epsilon:
action = self.maze.action_space.sample()
else:
with torch.no_grad():
q_values = self.model(state)
action = q_values.argmax().item()
next_state, reward, done, info = self.act(action)
next_state = torch.tensor(next_state, dtype=torch.float).to(self.device)
self.remember(state, action, reward, next_state, done)
self.train_update()
if done:
self.reset()
self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)
return reward
```
在该实现中,我们首先定义了一个神经网络模型 DQN,该模型由三个全连接层组成。然后,我们继承 QRobot 类并实现了 DQN 算法的核心部分。在 remember() 方法中,我们将机器人的经验存储到经验回放缓冲区中。在 train_update() 方法中,我们从经验回放缓冲区中随机采样一批经验,并使用这批经验来更新神经网络模型。在 test_update() 方法中,我们使用 epsilon-greedy 策略选择动作,并执行该动作来更新经验回放缓冲区和神经网络模型。最后,我们在该类的构造函数中初始化了一些超参数和模型参数,并将神经网络模型和目标网络模型分别初始化为相同的 DQN 模型。
阅读全文