roberts算子Prewitt算子Sobel算子Laplacian算子的比较
时间: 2023-09-05 17:11:00 浏览: 261
Robert算子、Prewitt算子、Sobel算子、Laplacian算子都是常见的边缘检测算子,它们的原理和使用方式略有不同,下面是它们的比较:
1. Robert算子:计算速度快,但对噪声敏感,容易产生误检测。
2. Prewitt算子:计算速度较快,对噪声的抑制效果较好,但边缘检测的结果不如Sobel算子和Laplacian算子。
3. Sobel算子:与Prewitt算子类似,但对噪声的抑制效果更好,且可以通过改变卷积核的大小来调整边缘检测的灵敏度。
4. Laplacian算子:可以检测出更多的边缘信息,但容易受到噪声的影响,且会产生较多的假阳性结果。
在实际应用中,选择哪种算子需要根据具体情况而定。如果需要快速计算边缘信息,可以选择Robert算子或Sobel算子;如果需要更准确的边缘信息,可以选择Laplacian算子;如果需要在较强噪声的情况下进行边缘检测,可以选择Prewitt算子或Sobel算子。
相关问题
Roberts算子、Prewitt算子、Sobel算子、Laplacian算子、Canny算子 代码python
以下是对应算子的简单示例代码:
Roberts算子:
```python
from scipy import ndimage
import numpy as np
def robert_cross(image):
roberts_cross_v = np.array( [[-1,0],[0,1]], dtype=np.int32 )
roberts_cross_h = np.array( [[0,-1],[1,0]], dtype=np.int32 )
vertical = ndimage.convolve( image, roberts_cross_v )
horizontal = ndimage.convolve( image, roberts_cross_h )
return np.sqrt( np.square(horizontal) + np.square(vertical) )
```
Prewitt算子:
```python
from scipy import ndimage
import numpy as np
def prewitt(image):
vert_prewitt = np.array([[-1,-1,-1],[0,0,0],[1,1,1]])
hori_prewitt = np.array([[-1,0,1],[-1,0,1],[-1,0,1]])
prewitt_vert = ndimage.convolve(image, vert_prewitt)
prewitt_hori = ndimage.convolve(image, hori_prewitt)
return np.sqrt( np.square(prewitt_vert) + np.square(prewitt_hori) )
```
Sobel算子:
```python
from scipy import ndimage
import numpy as np
def sobel(image):
vert_sobel = np.array([[-1,-2,-1],[0,0,0],[1,2,1]])
hori_sobel = np.array([[-1,0,1],[-2,0,2],[-1,0,1]])
sobel_vert = ndimage.convolve(image, vert_sobel)
sobel_hori = ndimage.convolve(image, hori_sobel)
return np.sqrt( np.square(sobel_vert) + np.square(sobel_hori) )
```
Laplacian算子:
```python
from scipy import ndimage
import numpy as np
def laplacian(image):
laplacian_kernal = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]])
filtered_img = ndimage.convolve(image, laplacian_kernal)
return filtered_img
```
Canny算子:
```python
from scipy import ndimage
import numpy as np
def canny(image, low_threshold=0, high_threshold=255):
img_smooth = ndimage.gaussian_filter(image, sigma=1.4)
img_x = ndimage.sobel(img_smooth, axis=0)
img_y = ndimage.sobel(img_smooth, axis=1)
gradient_magnitude = np.hypot(img_x, img_y)
gradient_direction = np.arctan2(img_y, img_x)
gradient_direction = np.rad2deg(gradient_direction)
gradient_direction[gradient_direction < 0] += 180
max_magnitude = np.max(gradient_magnitude)
if high_threshold > max_magnitude:
high_threshold = max_magnitude
if low_threshold > high_threshold:
low_threshold, high_threshold = high_threshold, low_threshold
row, col = image.shape
canny_img = np.zeros((row, col), dtype=np.uint8)
weak = np.int32(50)
strong = np.int32(255)
strong_i, strong_j = np.where(gradient_magnitude >= high_threshold)
zeros_i, zeros_j = np.where(gradient_magnitude < low_threshold)
weak_i, weak_j = np.where((gradient_magnitude <= high_threshold) & (gradient_magnitude >= low_threshold))
canny_img[strong_i, strong_j] = strong
canny_img[weak_i, weak_j] = weak
for i in range(1, row-1):
for j in range(1, col-1):
if canny_img[i,j] == weak:
if (canny_img[i+1, j-1] == strong) or (canny_img[i+1, j] == strong) or (canny_img[i+1, j+1] == strong) \
or (canny_img[i, j-1] == strong) or (canny_img[i, j+1] == strong) \
or (canny_img[i-1, j-1] == strong) or (canny_img[i-1, j] == strong) or (canny_img[i-1, j+1] == strong):
canny_img[i, j] = strong
else:
canny_img[i, j] = 0
return canny_img
```
使用MATLAB实现Roberts算子、Prewitt算子、Sobel算子、Laplacian算子、Canny算子的程序
以下是使用MATLAB实现Roberts算子、Prewitt算子、Sobel算子、Laplacian算子、Canny算子的程序。
Roberts算子:
```matlab
% 读取图像
img = imread('image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% Roberts算子
roberts_x = [1 0; 0 -1];
roberts_y = [0 1; -1 0];
% 计算x方向和y方向的梯度
roberts_grad_x = conv2(double(gray_img), roberts_x, 'same');
roberts_grad_y = conv2(double(gray_img), roberts_y, 'same');
% 计算梯度的幅值
roberts_grad = sqrt(roberts_grad_x.^2 + roberts_grad_y.^2);
% 显示结果
imshow(uint8(roberts_grad));
```
Prewitt算子:
```matlab
% 读取图像
img = imread('image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% Prewitt算子
prewitt_x = [-1 0 1; -1 0 1; -1 0 1];
prewitt_y = [-1 -1 -1; 0 0 0; 1 1 1];
% 计算x方向和y方向的梯度
prewitt_grad_x = conv2(double(gray_img), prewitt_x, 'same');
prewitt_grad_y = conv2(double(gray_img), prewitt_y, 'same');
% 计算梯度的幅值
prewitt_grad = sqrt(prewitt_grad_x.^2 + prewitt_grad_y.^2);
% 显示结果
imshow(uint8(prewitt_grad));
```
Sobel算子:
```matlab
% 读取图像
img = imread('image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% Sobel算子
sobel_x = [-1 0 1; -2 0 2; -1 0 1];
sobel_y = [-1 -2 -1; 0 0 0; 1 2 1];
% 计算x方向和y方向的梯度
sobel_grad_x = conv2(double(gray_img), sobel_x, 'same');
sobel_grad_y = conv2(double(gray_img), sobel_y, 'same');
% 计算梯度的幅值
sobel_grad = sqrt(sobel_grad_x.^2 + sobel_grad_y.^2);
% 显示结果
imshow(uint8(sobel_grad));
```
Laplacian算子:
```matlab
% 读取图像
img = imread('image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% Laplacian算子
laplacian = [-1 -1 -1; -1 8 -1; -1 -1 -1];
% 计算梯度
laplacian_grad = conv2(double(gray_img), laplacian, 'same');
% 显示结果
imshow(uint8(laplacian_grad));
```
Canny算子:
```matlab
% 读取图像
img = imread('image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% Canny算子
canny_grad = edge(gray_img, 'canny');
% 显示结果
imshow(canny_grad);
```
阅读全文