tf7 = tf_vectorizer.transform(data7.content_cutted) topics1 = lda.transform(tf1)报错Traceback (most recent call last): File "D:\python\lda\dateyh.py", line 127, in <module> topics1 = lda.transform(tf1) File "C:\Users\DELL\lib\site-packages\sklearn\decomposition\_lda.py", line 708, in transform X = self._check_non_neg_array( File "C:\Users\DELL\lib\site-packages\sklearn\decomposition\_lda.py", line 540, in _check_non_neg_array X = self._validate_data(X, reset=reset_n_features, accept_sparse="csr") File "C:\Users\DELL\lib\site-packages\sklearn\base.py", line 566, in _validate_data X = check_array(X, **check_params) File "C:\Users\DELL\lib\site-packages\sklearn\utils\validation.py", line 805, in check_array raise ValueError( ValueError: Found array with 0 sample(s) (shape=(0, 500)) while a minimum of 1 is required.
时间: 2023-07-21 17:53:29 浏览: 92
这个报错是因为你传递的 `tf1` 变量是一个形状为 `(0, 500)` 的空数组,而 LDA 模型需要至少一个样本才能进行拟合和预测。可能是因为你的 `data1` 数据中没有任何文本数据,或者在对 `data1` 进行文本预处理时出现了错误,导致 `tf1` 变量为空数组。你可以检查一下你的数据预处理步骤,确保它能够正确地生成非空的文本特征表示。
相关问题
修改以下代码,使其不会出现drop() takes from 1 to 2 positional arguments but 3 were given报错::import pyLDAvis import pyLDAvis.sklearn from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import LatentDirichletAllocation vectorizer = CountVectorizer() corpus = data['content_cutted'] doc_term_matrix = vectorizer.fit_transform(corpus) lda_model = LatentDirichletAllocation(n_components=2, random_state=888) lda_model.fit(doc_term_matrix)
要修改代码以避免出现 `drop() takes from 1 to 2 positional arguments but 3 were given` 的错误,你需要将 `pyLDAvis.sklearn.prepare()` 函数的调用改为只传递两个参数,即 LDA 模型和文档-词项矩阵。以下是修改后的代码:
```python
import pyLDAvis
import pyLDAvis.sklearn
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation
vectorizer = CountVectorizer()
corpus = data['content_cutted']
doc_term_matrix = vectorizer.fit_transform(corpus)
lda_model = LatentDirichletAllocation(n_components=2, random_state=888)
lda_model.fit(doc_term_matrix)
pyLDAvis.enable_notebook()
vis = pyLDAvis.sklearn.prepare(lda_model, doc_term_matrix, vectorizer)
pyLDAvis.display(vis)
```
在这个修改后的代码中,我们先调用 `pyLDAvis.enable_notebook()` 来启用 Jupyter Notebook 中的可视化。然后,我们将 LDA 模型和文档-词项矩阵作为参数传递给 `pyLDAvis.sklearn.prepare()` 函数,以生成可视化对象。最后,我们使用 `pyLDAvis.display()` 函数来显示可视化结果。
请确保你已经正确导入了 `data` 数据,并且在运行这段代码之前已经将其赋值给了正确的值。
以下代码出现报错:def chinese_word_cut(mytext): jieba.load_userdict(dic_file) jieba.initialize() try: stopword_list = open(stop_file,encoding ='utf-8') except: stopword_list = [] print("error in stop_file") stop_list = [] flag_list = ['n','nz','vn'] for line in stopword_list: line = re.sub(u'\n|\\r', '', line) stop_list.append(line) word_list = [] #jieba分词 seg_list = psg.cut(mytext) for seg_word in seg_list: word = re.sub(u'[^\u4e00-\u9fa5]','',seg_word.word) #word = seg_word.word #如果想要分析英语文本,注释这行代码,启动下行代码 find = 0 for stop_word in stop_list: if stop_word == word or len(word)<2: #this word is stopword find = 1 break if find == 0 and seg_word.flag in flag_list: word_list.append(word) return (" ").join(word_list)datacontent=data.content data["content_cutted"] = chinese_word_cut(datacontent)
这段代码可能存在以下问题:
1. 代码中引用的变量(如`dic_file`和`stop_file`)未被定义或赋值,需要保证这些变量已经被正确定义或赋值。
2. 代码依赖的`jieba`和`re`模块需要被引入,需要在代码的开头添加`import jieba`和`import re`语句。
3. 变量`data`未被定义,需要保证在这段代码被执行前,`data`变量已经被正确定义或赋值。
4. 函数`chinese_word_cut`中的`psg.cut(mytext)`可能存在问题,需要保证变量`psg`已经被正确定义或引用,否则可能会出现`NameError`异常。
建议你逐行检查代码,确认各个变量和模块的引用都正确无误,并在执行代码时注意捕获可能出现的异常。
阅读全文