#include<bits/stdc++.h> using namespace std; int n,m; int main() { srand(time(0)); cin>>n>>m; vector<int> time(n); vector<vector<int> > machine(m); vector<int> sumTime(m,0); for(int i=0;i<n;++i){ time[i]=rand()%30+1; cout<<time[i]<<setw(3); } sort(time.begin(),time.end(),greater<int>()); for(int i=0;i<n;++i){ int select=0; for(int j=0;j<m;++j){ if(sumTime[j]<sumTime[select]){ select=j; } } machine[select].push_back(time[i]); sumTime[select]+=time[i]; } int maxTime=sumTime[0]; for(int j=0;j<m;++j){ if(sumTime[j]>maxTime){ maxTime=sumTime[j]; } } for(int j=0;j<m;++j){ cout<<"第"<<j+1<<"台机器所需处理总时间为: "<<sumTime[j]<<endl; } cout<<"处理所有作业时间共需: "<<maxTime; return 0; }的时间复杂度
时间: 2024-04-06 11:32:26 浏览: 53
vc2019中 源文件<bits/stdc++.h>无法打开
这段代码的时间复杂度为 $O(nm\log m)$,其中 $n$ 是作业的数量,$m$ 是机器的数量。
首先,生成随机数的时间复杂度为 $O(n)$,因为需要生成 $n$ 个随机数。然后,对随机数进行排序的时间复杂度为 $O(n\log n)$,因为使用的是 `sort` 函数,它的时间复杂度是 $O(n\log n)$。接着,对于每一个作业,需要在所有可用机器中选择一个空闲时间最短的机器进行调度,这个过程的时间复杂度为 $O(nm)$。在选择机器的过程中,需要遍历所有机器,因此时间复杂度为 $O(m)$。因此,总的时间复杂度为 $O(nm\log n)$。
需要注意的是,在实际情况中,机器数量 $m$ 通常比作业数量 $n$ 小得多,因此可以将时间复杂度近似看作 $O(n\log n)$。
阅读全文