ef get_data(url): resp = requests.get(url) html = resp.text soup = BeautifulSoup(html,'html.parser') tr_list = soup.find_all('tr') dates,conditions,temp = [],[],[] for data in tr_list[1:]: sub_data = data.text.split() dates.append(sub_data[0]) conditions.append(''.join(sub_data[1:3])) temp.append(''.join(sub_data[3:6])) _data = pd.DataFrame() _data['日期'] = dates _data['天气情况'] = conditions _data['气温'] = temp return _data

时间: 2024-01-14 15:05:02 浏览: 117
这是一个Python函数,用于从指定的URL获取网页数据,并解析出其中的天气数据,返回一个Pandas数据框。具体实现过程如下: 1. 使用requests库向指定的URL发送请求,并获取响应数据; 2. 使用BeautifulSoup库解析HTML页面,获取其中的表格数据; 3. 遍历表格中的每一行数据,将日期、天气情况、气温等信息分别添加到对应的列表中; 4. 创建一个空的Pandas数据框,并将日期、天气情况、气温等信息分别作为列添加到数据框中; 5. 返回这个数据框。 需要注意的是,在解析HTML页面时,使用了html.parser解析器,这是Python内置的解析器,用于解析HTML和XML等格式的文本数据。在遍历表格数据时,使用了列表切片技术,从第二行开始遍历,跳过了表格的标题行。
相关问题

import requests from bs4 import BeautifulSoup import jieba.analyse import jieba.posseg as pseg from snownlp import SnowNLP import matplotlib.pyplot as plt # 设置请求头,模拟浏览器访问 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} # 获取网页内容 def get_html(url): resp = requests.get(url, headers=headers) resp.encoding = resp.apparent_encoding html = resp.text return html # 获取新闻列表 def get_news_list(url): html = get_html(url) soup = BeautifulSoup(html, 'html.parser') news_list = soup.find_all('a', class_="news_title") return news_list # 对文本进行情感分析 def sentiment_analysis(text): s = SnowNLP(text) return s.sentiments # 对文本进行关键词提取 def keyword_extraction(text): keywords = jieba.analyse.extract_tags(text, topK=10, withWeight=True, allowPOS=('n', 'vn', 'v')) return keywords # 对新闻进行分析 def analyze_news(url): news_list = get_news_list(url) senti_scores = [] # 情感分数列表 keyword_dict = {} # 关键词词频字典 for news in news_list: title = news.get_text().strip() link = news['href'] content = get_html(link) soup = BeautifulSoup(content, 'html.parser') text = soup.find('div', class_='article').get_text().strip() # 计算情感分数 senti_score = sentiment_analysis(text) senti_scores.append(senti_score) # 提取关键词 keywords = keyword_extraction(text) for keyword in keywords: if keyword[0] in keyword_dict: keyword_dict[keyword[0]] += keyword[1] else: keyword_dict[keyword[0]] = keyword[1] # 绘制情感分数直方图 plt.hist(senti_scores, bins=10, color='skyblue') plt.xlabel('Sentiment Score') plt.ylabel('Number of News') plt.title('Sentiment Analysis') plt.show() # 输出关键词词频排名 keyword_list = sorted(keyword_dict.items(), key=lambda x: x[1], reverse=True) print('Top 10 keywords:') for i in range(10): print('{}. {} - {:.2f}'.format(i+1, keyword_list[i][0], keyword_list[i][1])) if __name__ == '__main__': url = 'https://news.sina.com.cn/' analyze_news(url)

这是一段 Python 代码,用于从新浪新闻网站获取新闻列表,并对新闻进行情感析和关键词提取。具体来,它使用 requests 库获取网页内容,使用 库解析网页,使用 jieba 库关键词提取,使用 SnowNLP 库进行情感析,最后使用 Matplotlib 库绘制情分数直方图并输出关键词词频排名。如果您运行此代码,它将输出情感数直方图和关键词词频排名,以及在控制台上显示这些内容。

import requests from bs4 import BeautifulSoup session = requests.Session() cookie = 'your_cookie_here' session.headers.update({'cookie': cookie}) def get_with_cookie(url): try: resp = session.get(url) return resp.text except requests.exceptions.RequestException as e: print("请求异常:", e) return None # 解析HTML内容,提取商品名称、价格和销量信息 def parse_html(html): try: soup = BeautifulSoup(html, 'html.parser') title = soup.select_one('h3.tb-main-title[data-title]') return title except Exception as e: print("解析异常:", e) return None # 测试接口: url = 'https://item.taobao.com/item.htm?id=699089474285&ali_refid=a3_430673_1006:1102522391:N:%2BAkz14GC%2BXi%2Bma9dw7y9M4p5Yhq5iT8I:f9e826228fbc823934848d20e28dff81&ali_trackid=162_f9e826228fbc823934848d20e28dff81&spm=a2e0b.20350158.31919782.5' resp_text = get_with_cookie(url) if resp_text is not None: title = parse_html(resp_text) if title is not None: # 打印商品信息 print(title.text.strip()) else: print("解析失败") else: print("请求失败")用其他方式帮我解析对应位置的数据

可以使用正则表达式或者XPath来解析HTML内容,以下是两种方法的示例: 1. 使用正则表达式解析商品名称 ```python import re def parse_title(html): try: pattern = r'"title":"(.*?)"' # 正则表达式模式 title = re.search(pattern, html).group(1) # 查找匹配的字符串并提取 return title except Exception as e: print("解析异常:", e) return None # 测试接口: url = 'https://item.taobao.com/item.htm?id=699089474285&ali_refid=a3_430673_1006:1102522391:N:%2BAkz14GC%2BXi%2Bma9dw7y9M4p5Yhq5iT8I:f9e826228fbc823934848d20e28dff81&ali_trackid=162_f9e826228fbc823934848d20e28dff81&spm=a2e0b.20350158.31919782.5' resp_text = get_with_cookie(url) if resp_text is not None: title = parse_title(resp_text) if title is not None: # 打印商品信息 print(title) else: print("解析失败") else: print("请求失败") ``` 2. 使用XPath解析商品名称 ```python from lxml import etree def parse_title(html): try: root = etree.HTML(html) title = root.xpath('//h3[@class="tb-main-title"]/text()')[0] # 使用XPath定位节点并提取文本 return title except Exception as e: print("解析异常:", e) return None # 测试接口: url = 'https://item.taobao.com/item.htm?id=699089474285&ali_refid=a3_430673_1006:1102522391:N:%2BAkz14GC%2BXi%2Bma9dw7y9M4p5Yhq5iT8I:f9e826228fbc823934848d20e28dff81&ali_trackid=162_f9e826228fbc823934848d20e28dff81&spm=a2e0b.20350158.31919782.5' resp_text = get_with_cookie(url) if resp_text is not None: title = parse_title(resp_text) if title is not None: # 打印商品信息 print(title.strip()) else: print("解析失败") else: print("请求失败") ```
阅读全文

相关推荐

import requests import os from bs4 import BeautifulSoup cookie = os.getenv('MY_COOKIE') # 保存到环境变量中 def get_with_cookie(url): headers = { 'cookie': cookie, 'pragma': 'no-cache', 'referer': 'https://uland.taobao.com/sem/tbsearch?refpid=mm_26632258_3504122_32538762&keyword=%E7%88%B1%E6%B7%98%E5%AE%9D%E4%B9%B0%E4%B8%9C%E8%A5%BF&clk1=066356e5e429004e6730976351cc1afc&upsId=066356e5e429004e6730976351cc1afc', 'sec-ch-ua': '"Microsoft Edge";v="113", "Chromium";v="113", "Not-A.Brand";v="24"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': "Windows", 'sec-fetch-dest': 'document', 'sec-fetch-mode': 'navigate', 'sec-fetch-site': 'same-origin', 'sec-fetch-user': '?1', 'upgrade-insecure-requests': '1', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.50' } try: resp = requests.get(url=url, headers=headers) return resp.text except requests.exceptions.RequestException as e: print("请求异常:", e) return None # 解析HTML内容,提取商品名称、价格和销量信息 def parse_html(html): try: soup = BeautifulSoup(html, 'html.parser') title = soup.select_one('h3.tb-main-title[data-title]') return title except Exception as e: print("解析异常:", e) return None # 测试接口: url = 'https://item.taobao.com/item.htm?id=699089474285&ali_refid=a3_430673_1006:1102522391:N:%2BAkz14GC%2BXi%2Bma9dw7y9M4p5Yhq5iT8I:f9e826228fbc823934848d20e28dff81&ali_trackid=162_f9e826228fbc823934848d20e28dff81&spm=a2e0b.20350158.31919782.5' resp_text = get_with_cookie(url) if resp_text is not None: title = parse_html(resp_text) if title is not None: # 打印商品信息 print(title.text.strip()) else: print("解析失败") else: print("请求失败")代码有什么问题?

import requests import os from bs4 import BeautifulSoup cookie = os.getenv('MY_COOKIE') # 保存到环境变量中 def get_with_cookie(url): headers = { 'cookie': cookie, 'pragma': 'no-cache', 'referer': 'https://uland.taobao.com/sem/tbsearch?refpid=mm_26632258_3504122_32538762&keyword=%E7%88%B1%E6%B7%98%E5%AE%9D%E4%B9%B0%E4%B8%9C%E8%A5%BF&clk1=066356e5e429004e6730976351cc1afc&upsId=066356e5e429004e6730976351cc1afc', 'sec-ch-ua': '"Microsoft Edge";v="113", "Chromium";v="113", "Not-A.Brand";v="24"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': "Windows", 'sec-fetch-dest': 'document', 'sec-fetch-mode': 'navigate', 'sec-fetch-site': 'same-origin', 'sec-fetch-user': '?1', 'upgrade-insecure-requests': '1', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.50' } resp = requests.get(url=url, headers=headers) return resp.text # 解析HTML内容,提取商品名称、价格和销量信息 def parse_html(html): soup = BeautifulSoup(html, 'html.parser') title = soup.select_one('h3.tb-main-title[data-title]') return title # 测试接口: url = 'https://item.taobao.com/item.htm?id=699089474285&ali_refid=a3_430673_1006:1102522391:N:%2BAkz14GC%2BXi%2Bma9dw7y9M4p5Yhq5iT8I:f9e826228fbc823934848d20e28dff81&ali_trackid=162_f9e826228fbc823934848d20e28dff81&spm=a2e0b.20350158.31919782.5' resp_text = get_with_cookie(url) title = parse_html(resp_text) # 打印商品信息 print(title.text.strip())使用try-except语句捕获异常

最新推荐

recommend-type

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页
recommend-type

PyMySQL-1.1.0rc1.tar.gz

PyMySQL-1.1.0rc1.tar.gz
recommend-type

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip
recommend-type

docker构建php开发环境

docker构建php开发环境
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依